PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physico-chemical and Biological Techniques of Bisphenol A Removal in an Aqueous Solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bisphenol A (BPA) is widely used in everyday life and can be found everywhere, including in the ecosystem and manufactured goods. BPA not only has a negative impact in low doses, but it also has biological and pathophysiological implications for obesity and hormonal effects. The objectives of this paper were to review the BPA removal technology and the factors that influence the BPA removal based on biological methods. BPA elimination from water is crucial for environmental protection, in terms of biological treatment. In addition, the future prospect of biological removal of BPA indicates that effective microorganism cultures could disturb the pathogen growth and increase composition rate of BPA. The biological technology by the implementation of microorganisms for the removal of BPA through break down of organic contaminants is straightforward, money saving, and widely acknowledged by the public.
Rocznik
Strony
136--148
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Department of Petrochemical Engineering, Politeknik Kuching Sarawak KM 22, Jalan Matang, 93050, Kuching, Sarawak, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Bibliografia
  • 1. Abu Bakar S.N.H., Hasan H.A., Abdullah S.R.S., Kasan N.A., Muhamad M.H., Kurniawan S.B. 2021. A review of the production process of bacteria-based polymeric flocculants. Journal of Water Process Engineering, 40, 101915.
  • 2. Akhter F., Soomro S.A., Siddique M., Ahmed M. 2021. Plant and Non-plant based Polymeric Coagulants for Wastewater Treatment: A Review. Jurnal Kejuruteraan, 33, 175–181.
  • 3. Aravind P., Devarajan A., Solaiappan A., Selvaraj H., Sundarama M. 2019. Removal of BPA from thermal cash receipts via electro oxidation cum biodegradation: Evaluating its degradation mechanism and in silico toxicity analysis. Journal of Water Process Engineering, 31, 100–189.
  • 4. Asadgol Z., Forootanfar H., Rezaei S., Mahvi A.H., Faramarzi M.A. 2014. Removal of phenol and bisphenol A catalysed by laccase in aqueous solution. Journal Environment Health Science Engineering, 12(93).
  • 5. Brazkova M., Angelova G., Krastanov A. 2019. Biodegradation of bisphenol a during submerged cultivation of Trametes versicolor. Journal of Microbiology, Biotechnology, and Food Science, 9(2), 204–207.
  • 6. Chang B.V., Yuan S.Y., Chiou C.C. 2011. Biodegradation of bisphenol-A in river sediment. Journal of Environmental Science and Health, 14, 100–134.
  • 7. Chen G. 2004. Electrochemical technologies in wastewater treatment. Separation Purification Technology, 38, 11–41.
  • 8. Chen Z-H., Zhuang Liu Z., Hu J-Q., Cai Q-W., Li X-Y., Wang W., Ju X-J., Xie R., Chu L-Y. 2019. β-Cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water. Journal of Membrane Science, 595, 117–151.
  • 9. Chin K.Y., Pang K.L., Mark-Lee W.F. 2018. A review on the effects of bisphenol A and its derivatives on skeletal health. International Journal of Medical Sciences, 15, 1043–1050.
  • 10. Cox M, Négré P., Yurramendi L. 2015. Industrial liquid effluents. INASMET Tecnalia, San Sebastian.
  • 11. Crini G. & Badot P.M. 2015. Sorption processes and pollution. PUFC: Besançon
  • 12. El-Bestawy E., Hussein H., Baghdadi H.H., ElSaka M.F. 2015. Comparison between biological and chemical treatment of wastewater containing nitrogen and phosphorus. Journal Industrial Microbiology Biotechnology, 32, 195–203.
  • 13. Gurmeet K.S.S., Rosnah I., Normadiah M.K., Das S., Mustafa A.M. 2014. Detrimental effects of bisphenol A on development and functions of the male reproductive system in experimental rats. EXCLI Journal, 13, 151–160.
  • 14. Han J., Luo P., Wang L., Li C., Mao Y., Wang Y. 2019. Construction of magnetic nanoflower biocatalytic system with enhanced enzymatic performance by biomineralization and its application for bisphenol A removal. Journal of Hazardous Materials 380, 120–159.
  • 15. Hasib N.A. & Othman Z. 2020. Assessing the relationship between pollution sources and water quality parameters of Sungai Langat basin using association rule mining. Sains Malaysiana, 49, 2345–2358.
  • 16. Hing-Biu Lee H-B. & Thomas E., Peart T.E. 2000. Bisphenol A contamination in Canadian municipal and industrial wastewater and sludge samples. Water Quality Research Journal, 35, 283–298.
  • 17. Ju P., Fan H., Guo D., Meng X., Xu M., Ai S. 2012. Electrocatalytic degradation of Bisphenol A in water on a Ti-based PbO2-ionic liquids (ILs) electrode. Chemical Engineering Journal. 179, 99–106.
  • 18. Kimura Y., Yamamoto M., Shimazaki R., Kashiwada A., Matsuda K., Yamada K. 2015. Use of chitosan for removal of Bisphenol A from aqueous solutions through quinone oxidation by polyphenol oxidase. Journal Application Polymer Science, 124, 796–804.
  • 19. Lu L. & Chen B. 2018. Enhanced bisphenol A removal from stormwater in biochar-amended biofilters: Combined with batch sorption and fixed-bed column studies. Environmental Pollution, 243(B), 1539–1549.
  • 20. Molkenthin M., Olmez-Hanci T., Jekel M.R., ArslanAlaton I. 2013. Photo-Fenton-like treatment of BPA: Effect of UV light source and water matrix on toxicity and transformation products. Water Research, 1–13.
  • 21. Muszynski A., Tabernacka A., Miłobedzka A. 2015. Long-term dynamics of the microbial community in a full-scale wastewater treatment plant. International Biodeterioration & Biodegradation, 100, 44–51.
  • 22. Rathoure A.K., Dhatwalia V.K. 2016. Toxicity and waste management using bioremediation. IGI Global, Hershey.
  • 23. Rivero M.J., Alonso E., Dominguez S., Ribao P., Ibañez R., Ortiz I., Irabien A. 1997. Kinetic analysis and biodegradability of the Fenton mineralization of bisphenol A. Journal Chemical Technology/Biotechnology 89, 1228–1 234
  • 24. Saleh T.A., Tuzen M., Sari A. 2019. Magnetic vermiculite-modified by poly(trimesoyl chloridemelamine) as a sorbent for enhanced removal of bisphenol A. Journal of Environmental Chemical Engineering, 7, 103–136.
  • 25. Sarma H., Nava A.R., Manriquez A.M.E., Dominguez D.C., Lee W-Y. 2019. Biodegradation of bisphenol A by bacterial consortia isolated directly from river sediments. Environmental Technology & Innovation, 14, 131–174
  • 26. Sabrine Ben Ouada, Rihab Ben Ali, Christophe Leboulanger, Hatem Ben Ouada, Sami Sayadi. 2018. Effect of Bisphenol A on the extremophilic microalgal strain Picocystis sp. (Chlorophyta) and its high BPA removal ability. Ecotoxicology and Environmental Safety, 158, 1–8.
  • 27. Schröder H.F. 2006. The elimination of the endocrine disrupters 4-nonylphenol and bisphenol A during wastewater treatment—comparison of conventional and membrane assisted biological wastewater treatment followed by ozone treatment. Water Practical Technology, 1–13.
  • 28. Sharma J., Mishra I.M., Kumar V. 2015. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/ H2O2 and UV/S2O8oxidation systems. Journal of Environmental Management. 156, 266–275.
  • 29. Silva-Bedoyaa L.M., Sanchez-Pinzonb M.S., Cadavid-Restrepoa G.E., Moreno-Herreraa C.X. 2016. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms. Microbial Research, 192, 313–325.
  • 30. Sonoki T., Kajita S., Uesugi M., Katayama Y., Iimura Y. 2011. Effective removal of Bisphenol A from contaminated areas by recombinant plant producing lignin peroxidase. Journal Petrochemical Environmental Biotechnology, 2(1), 105–135.
  • 31. Sonune A. & Ghate R. 2004. Developments in wastewater treatment methods. Desalination, 167, 55–63.
  • 32. Ungureanu E-L., Mustăţea G., Stanca L., Şerban I. 2018. Quantifying bisphenol from food packaging and assessment of its cytotoxic potential. Sciendo, 495–500.
  • 33. Xie Y-T., Li H-B., Wang L., Liu Q., Shi Y., Zheng H-Y., Zhang M., Wu Y-T., Lu B. 2011. Molecularly imprinted polymer microspheres enhanced biodegradation of bisphenol A by acclimated activated sludge. Water Research, 45, 1189–1198
  • 34. Yamamoto T., Yasuhara A., Shiraishi H., Osami Nakasugi O. 2001. Bisphenol A in hazardous waste landfill leachates. Chemosphere, 42, 415–418.
  • 35. Yang Y-Z., Tang Q., Gong C-B., Ma X-B., Jingdong Peng J-D., Lam M.H-W. 2014. Ultrasensitive detection of bisphenol A in aqueous media using photo responsive surface molecular imprinting polymer microspheres. New Journal of Chemistry, 38(4), 1780–1788.
  • 36. Yuksel S., Kabay N., Yuksel M. 2013. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Journal Hazardous Materials, 263, 307–310.
  • 37. Zamri M.F.M.A., Bahru R., Suja F., Shamsuddin A.H., Pramanik S.K., Fattah I.M.R. 2021. Treatment strategies for enhancing the removal of endocrine-disrupting chemicals in water and wastewater systems. Journal of Water Process Engineering, 41, 102017.
  • 38. Zhang L., Wu B., Gan Y., Chen Z., Zhang S. 2020. Sludge reduction and cost saving in removal of Cu(II)-EDTA from electroplating wastewater by introducing a low dose of acetylacetone into the Fe(III)/UV/NaOH process. Journal of Hazardous Materials, 382, 121–157.
  • 39. Zhang Z., Ruan Z., Liu J., Liu C., Zhang F., Linhardt R.J., Li L. 2019. Complete degradation of bisphenol A and nonylphenol by a composite of biogenic manganese oxides and Escherichia coli cells with surface-displayed multicopper oxidase CotA. Chemical Engineering Journal, 362, 897–908.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-355c1863-b802-45fd-a9cd-be0aa537525a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.