PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On some subclasses of the family of Darboux Baire 1 functions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce a subclass of the family of Darboux Baire 1 functions f : R → R modifying the Darboux property analogously as it was done by Z. Grande in [On a subclass of the family of Darboux functions, Colloq. Math. 17 (2009), 95–104], and replacing approximate continuity with I-approximate continuity, i.e. continuity with respect to the I-density topology. We prove that the family of all Darboux quasi-continuous functions from the first Baire class is a strongly porous set in the space DB1 of Darboux Baire 1 functions, equipped with the supremum metric.
Rocznik
Strony
777--788
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • University of Łódz Faculty of Mathematics and Computer Science ul. Banacha 22, 90-238 Łódz, Poland
  • University of Łódz Faculty of Mathematics and Computer Science ul. Banacha 22, 90-238 Łódz, Poland
Bibliografia
  • 1] A.M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math., vol. 659, Springer, Berlin, 1978.
  • [2] K. Ciesielski, L. Larson, K. Ostaszewski, I-Density Continuous Functions, Mem. Amer. Math. Soc. 515, Providence, Rhode Island, 1994.
  • [3] M. Ciklová, Dynamical systems generated by functions with connected G graphs, Real Anal. Exchange 30 (2004/2005), 617–638.
  • [4] Z. Grande, On a subclass of the family of Darboux functions, Colloq. Math. 117 (2009) 1, 95–104.
  • [5] G. Ivanova, Remarks on some modification of the Darboux property, Bull. Soc. Sci. Lett. Łódz Sér. Rech. Déform. 72 (2014) 3, 91–100.
  • [6] G. Ivanova, E. Wagner-Bojakowska, On some modification of Darboux property (to appear in Math. Slovaca).
  • [7] G. Ivanova, E. Wagner-Bojakowska, On some modification of Swiatkowski property, Tatra Mt. Math. Publ. 58 (2014), 101–109.
  • [8] K. L. Kellum, Iterates of almost continuous functions and Sharkovskii’s theorem, Real Anal. Exchange 14 (1988/1989), 420–422.
  • [9] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.
  • [10] J. Kucner, R. Pawlak, B. Swiatek, On small subsets of the space of Darboux functions, Real Anal. Exchange 25 (1999) 1, 343–358.
  • [11] A. Kuratowski, A. Mostowski, Set theory with an introduction to descriptive set theory, Warszawa, PWN, 1976.
  • [12] E. Łazarow, R. A. Johnson, W. Wilczynski, Topologies related to sets having the Baire property, Demonstratio Math. 21 (1989) 1, 179–191.
  • [13] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
  • [14] A. Maliszewski, Darboux property and quasi-continuity. A uniform approach, WSP Słupsk, 1996.
  • [15] A. Maliszewski, On the limits of strong Swiatkowski functions, Zeszyty Nauk. Politech. Łódz. Mat. 27 (1995) 719, 87–93.
  • [16] A. Maliszewski, On the averages of Darboux functions, Trans. Amer. Math. Soc. 350 (1998), 2833–2846.
  • [17] A. Maliszewski, Sums and products of quasi-continuous functions, Real Anal. Exchange 21 (1995/1996) 1, 320–329.
  • [18] T. Mank, T. Swiatkowski, On some class of functions with Darboux’s characteristic, Zeszyty Nauk. Politech. Łódz. Mat. 11 (1977) 301, 5–10.
  • [19] A. Neubrunnová, On certain generalizations of the notion of continuity, Matematický Casopis 23 (1973) 4, 374–380.
  • [20] H. Pawlak, R. Pawlak, Dynamics of Darboux functions, Tatra Mt. Math. Publ. 42 (2009), 51–60.
  • [21] H. Pawlak, R. Pawlak, Transitivity, dense orbits and some topologies finer than the natural topology of the unit interval, Tatra Mt. Math. Publ. 35 (2007), 1–12.
  • [22] R.J. Pawlak, On Sharkovsky’s property of Darboux functions, Tatra Mt. Math. Publ. 42 (2009), 95–105.
  • [23] R.J. Pawlak, On the entropy of Darboux functions, Colloq. Math. 116 (2009) 2, 227–241.
  • [24] W. Poreda, E. Wagner-Bojakowska, W. Wilczynski, A category analogue of the density topology, Fund. Math. 125 (1985), 167–173.
  • [25] W. Poreda, E. Wagner-Bojakowska, W. Wilczynski, Remarks on I-density and I-approximately continuous functions, Comm. Math. Univ. Carolinae 26 (1985) 3, 553–563.
  • [26] H. Rosen, Porosity in spaces of Darboux-like functions, Real Anal. Exchange 26 (2000) 1, 195–200.
  • [27] R. Wiertelak, A generalization of density topology with respect to category, Real Anal. Exchange 32 (2006/2007) 1, 273–286.
  • [28] W. Wilczynski, A generalization of the density topology, Real Anal. Exchange 8 (1982/1983) 1, 16–20.
  • [29] W. Wilczynski, A category analogue of the density topology, approximate continuity and the approximate derivative, Real Anal. Exchange 10 (1984/1985) 2, 241–265.
  • [30] L. Zajicek, On -porous sets in abstract spaces, Abstr. Appl. Anal. 5 (2005), 509–534.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-355be6db-23e9-46fb-a70c-95e98bfbf3f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.