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Abstract. We introduce a subclass of the family of Darboux Baire 1 functions f : R → R
modifying the Darboux property analogously as it was done by Z. Grande in [On a subclass
of the family of Darboux functions, Colloq. Math. 17 (2009), 95–104], and replacing approxi-
mate continuity with I-approximate continuity, i.e. continuity with respect to the I-density
topology. We prove that the family of all Darboux quasi-continuous functions from the first
Baire class is a strongly porous set in the space DB1 of Darboux Baire 1 functions, equipped
with the supremum metric.
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1. INTRODUCTION

Studies concerning the “size” of some subsets of the metric space have a long tradition,
also in the case when a space is a family of functions. One of the best known and
interesting examples of this kind is a result of S. Banach. In 1931 S. Banach using the
category method showed that the set of nowhere differentiable functions is residual
in the space of continuous functions under the supremum metric.

It is natural to consider similar problems for different spaces of functions. Our
paper is devoted to investigations of subclasses of the class D of Darboux functions
in this context.

Functions with the Darboux (intermediate value) property continue to hold inter-
est for a variety of reasons. Many papers which appeared during the last few years
contain results concerning Darboux-like functions in relation to dynamical systems
(see [3, 8, 20–23]).

The notion of porosity in spaces of Darboux-like functions was studied among
others by J. Kucner, R. Pawlak, B. Świątek in [10] and by H. Rosen in [26].
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Modifications of the Darboux property are also considered. In particular, in the
case of the strong Świątkowski property we demand from a point where a function
takes on the intermediate value that it be a continuity point of this function (see
[14,15]).

In [4] Z. Grande considered subclass Dap of the family of Darboux functions re-
placing continuity at a point, where a functions takes on the intermediate value, with
approximate continuity, i.e. continuity with respect to the density topology. In the
paper mentioned above Z. Grande proved among others that the family DapB1 is a
nowhere dense set in the space DB1 equipped with the supremum metric, where DB1
is the family of Darboux functions of Baire class 1 (and throughout, as here, we omit
the intersection sign when context permits: DB1 ≡ D ∩ B1).

In this note, following Z. Grande, we consider functions with the I-ap Darboux
property, replacing approximate continuity with I-approximate continuity, i.e. conti-
nuity with respect to the I-density topology.

We prove that the set DQB1 of all Darboux quasi-continuous Baire 1 functions is
strongly porous (so also nowhere dense) in the space DB1.

2. PRELIMINARIES

A function f : R→ R has the intermediate value property if on each interval (a, b) ⊂ R
function f assumes every real value between f (a) and f (b). In 1875 J. Darboux
showed that this property is not equivalent to continuity, and that every derivative
has the intermediate value property.

Let us introduce a metric ρ on the space D as follows:

ρ(f, g) = min {1, sup {|f(t)− g(t)| : t ∈ R}} .

To simplify notation, we shall write

〈a, b〉 = (min{a, b},max{a, b}) .

In 1977 T. Mańk and T. Świątkowski in [18] define a modification of the Dar-
boux property. They considered a family of functions with the so-called Świątkowski
property.

Definition 2.1 ([18]). A function f : R → R has the Świątkowski property iff for
each interval (a, b) ⊂ R there exists a point x0 ∈ (a, b) such that f (x0) ∈ 〈f (a) , f (b)〉
and f is continuous at x0.

In 1995 A. Maliszewski investigated a class of functions which possess a stronger
property.

Definition 2.2 ([15]). A function f : R → R has the strong Świątkowski property
(briefly f ∈ Ds) iff for each interval (a, b) ⊂ R and for each λ ∈ 〈f (a) , f (b)〉 there
exists a point x0 ∈ (a, b) such that f (x0) = λ and f is continuous at x0.
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For more details about the strong Świątkowski property see [14–17].
Z. Grande in 2009 considered a modification of the strong Świątkowski property

replacing continuity with approximate continuity.

Definition 2.3 ([4]). A function f : R → R has the ap-Darboux property (briefly
f ∈ Dap) iff for each interval (a, b) ⊂ R and for each λ ∈ 〈f (a) , f (b)〉 there exists a
point x0 ∈ (a, b) such that f (x0) = λ and f is approximately continuous at x0.

In [4] Z. Grande proved that the family Dap is nowhere dense set in the space D,
and DapB1 is nowhere dense in DB1.

Let I be the σ-ideal of sets of the first category.
In [5–7] we introduced the analogous modification of the strong Świątkowski prop-

erty replacing continuity with I-approximate continuity, i.e. by continuity with respect
to the I-density topology in the domain (see [2, 24,25,28,29]).

We say that a property holds I-almost everywhere (briefly I-a.e.) iff the set of all
points which do not have this property belongs to I.
Definition 2.4 ([24]). The sequence {fn}n∈N of functions with the Baire property
converges with respect to I to some real function f with the Baire property (fn

I−−−−→
n→∞

f) iff every subsequence {fmn}n∈N of {fn}n∈N contains a subsubsequence {fmpn
}n∈N

which converges to f I-a.e.
Let A be a set with the Baire property and n·A = {n· a : a ∈ A} for n ∈ N.

Definition 2.5 ([24]). A point 0 is an I-density point of A iff

χ(n·A)∩(−1,1)
I−−−−→

n→∞
χ(−1,1).

A point 0 is an I-dispersion point of A iff 0 is an I-density point of R\A. We say that
x is an I-density point of A if 0 is an I-density point of A− x = {a− x : a ∈ A}.

Put
Φ (A) = {x ∈ R : x is an I-density point of A}.

The family

τI = {A ⊂ R : A has the Baire property and A ⊂ Φ (A)}

called the I-density topology was first studied in [24,25,29].
Recall that a function f : R → R is I-approximately continuous at x0 ∈ R iff for

every ε > 0 there exists U ∈ τI such that x0 ∈ U and f (U) ⊂ (f (x0)− ε, f (x0) + ε).

Definition 2.6 ([5–7]). A function f : R→ R has the I-ap-Darboux property (briefly
f ∈ DI−ap) iff for each interval (a, b) ⊂ R and for each λ ∈ 〈f (a) , f (b)〉 there exists
a point x0 ∈ (a, b) such that f (x0) = λ and f is I-approximately continuous at x0.

We have
Ds ⊂ Dap ∩ DI−ap ⊂ Dap ∪ DI−ap ⊂ D,

and in [5] it is proved that all these inclusions are proper.
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Let us denote by A (Int (A)) the closure (interior) of the set A in the Euclidean
topology, respectively. A set A ⊂ R is said to be semi-open iff there is an open set
U such that U ⊂ A ⊂ U (see [13]). It is not difficult to see that A is semi-open
iff A ⊂ Int (A). The family of all semi-open sets will be denoted by S. A function
f : R → R is semi-continuous iff for each set V open in the Euclidean topology the
set f−1 (V ) is semi-open (compare [13]).

Definition 2.7 ([9]). A function f : R → R is quasi-continuous at a point x iff
for every neighbourhood U of x and for every neighbourhood V of f (x) there exists
a non-empty open set G ⊂ U such that f (G) ⊂ V . A function f : R → R is
quasi-continuous (briefly f ∈ Q) if it is quasi-continuous at each point.

A. Neubrunnová proved in [19] that f is semi-continuous if and only if it is
quasi-continuous.

3. MAIN RESULTS

In [6] it is proved that the family DI−ap is a strongly porous set in the space of
Darboux functions having the Baire property, and that each function from DI−ap is
quasi-continuous.

Observe that even the family Ds is not contained in the class DB1 of Darboux
Baire 1 functions.

Lemma 3.1. There exists a function f : R → [0, 1] having the strong Świątkowski
property which is not in the first class of Baire.

Proof. Let C be a Cantor set and let {(an, bn)}n∈N be a sequence of all the component
intervals of the set [0, 1] \C. Put

f(x) =





1 for x ∈
[
an,

3an+bn
4

]
∪
[
an+3bn

4 , bn
]
, n ∈ N,

0 for x ∈
(
R\

∞⋃
n=1

[an, bn]

)
∪
∞⋃
n=1

{
an+bn

2

}
,

linear on the intervals
[
3an+bn

4 , an+bn2

]
∪
[
an+bn

2 , an+3bn
4

]
, n ∈ N.

Clearly, f is not in the first class of Baire, as f | C has no points of continuity. On
the other hand, f ∈ Ds since C is a nowhere dense set.

We have a sequence of proper inclusions

DsB1 ( DapB1 ∩ DI−apB1 ( DapB1 ∪ DI−apB1 ( DB1,

as all the functions constructed in [5] are in the first class of Baire.

Definition 3.2 ([6]). A function f : R → R has the q-property iff for each interval
(a, b) ⊂ R such that f | (a, b) is not constant and for each interval (C,D) ⊂ f ((a, b))
there exists an interval (c, d) ⊂ (a, b) such that f ((c, d)) ⊂ (C,D).
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In [6] it is proved that if f ∈ DI−ap, then f has the q-property.
We shall prove that DQB1 is a strongly porous set in (DB1, ρ). For this purpose

we need some auxiliary lemmas.

Lemma 3.3. A Darboux function f has the q-property iff f is quasi-continuous.

Proof. Let f be a Darboux function having the q-property. Let V be an open set and
A = f−1 (V ). Observe that

A ⊂ Int (A). (3.1)

Let x ∈ A. There are two cases:
Case 1. f is constant on some neighbourhood of x. Then f−1 (V ) contains this neigh-
bourhood, so x ∈ Int (A).
Case 2. f is constant on no neighbourhood of x. From the Darboux property
f ((x− 1, x+ 1)) is a non-degenerate interval. Since f has the q-property, there exists
an interval (c1, d1) ⊂ (x− 1, x+ 1) such that

f ((c1, d1)) ⊂ V ∩ Int (f ((x− 1, x+ 1))) . (3.2)

Let x1 be the centre of (c1, d1). From (3.2) we obtain x1 ∈ Int
(
f−1 (V )

)
, so x1 ∈

Int (A). Analogously, for each n ∈ N there exists a point xn ∈ (x− 1/n, x+ 1/n) such
that xn ∈ Int (A). Consequently x ∈ Int (A), as xn

n→∞−−−−→ x. Hence A is semi-open
set. From [19] it follows that f is quasi-continuous.

Now let f ∈ DQ. Let (a, b) and (C,D) be two intervals such that f | (a, b) is not
constant and (C,D) ⊂ f ((a, b)). Let y ∈ (C,D). Then there exists a point x ∈ (a, b)
such that f (x) = y and f is quasi-continuous at x. Hence there exists a semi-open
set A such that x ∈ A and f (A) ⊂ (C,D).

Let δ be a positive number such that (x− δ, x+ δ) ⊂ (a, b). As x ∈ A and A ⊂
Int (A), there exists a point xδ ∈ (x− δ, x+ δ) ∩ Int (A). So there exists δ1 > 0 such
that

(xδ − δ1, xδ + δ1) ⊂ (x− δ, x+ δ) ∩ Int (A) .

Put (c, d) = (xδ − δ1, xδ + δ1). Obviously, (c, d) ⊂ (a, b) and f ((c, d)) ⊂ f (A) ⊂
(C,D).

Lemma 3.4. Let f be a Darboux function. If there exist two intervals (a, b) and
(A,B) such that f−1 ((A,B))∩ (a, b) is a non-empty set with an empty interior, then
f does not have the q-property.

Proof. Suppose, on the contrary, that f does have the q-property. Obviously, f is not
constant on (a, b), so from the Darboux property f ((a, b))∩(A,B) is a non-degenerate
interval. Put

(C,D) = Int (f ((a, b))) ∩ (A,B) .

From the q-property there exists an interval (c, d) ⊂ (a, b) such that f ((c, d)) ⊂
(C,D) ⊂ (A,B). Consequently,

(c, d) ⊂ f−1 ((A,B)) ∩ (a, b) ,

a contradiction.
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Let B (f, r) denote the open ball with centre f and with radius r in the space
(D, ρ).

Lemma 3.5. For an arbitrary interval (a, b) there exists a function f : R onto−−−→ [0, 1]
vanishing I-a.e. on (a, b) and everywhere on R\ (a, b) such that

(i) f ∈ DB1,
(ii) B

(
f, 12

)
∩ DQ = ∅,

(iii) there exists a function h ∈ DQ such that ρ (f, h) = 1
2 .

Proof. Let (a, b) ⊂ R and let {Cn}n∈N be a sequence of pairwise disjoint closed
nowhere dense subsets of [a, b] of cardinality continuum such that for each interval
(c, d) ⊂ (a, b) there exists a natural number n with Cn ⊂ (c, d) (see [6]). Put C =⋃
n∈N Cn. Obviously, C is a set of type Fσ which is bilaterally c-dense-in-itself, so using

Theorem 2.4 of [1, Chapter II], there exists a function f ∈ DB1 such that f (x) = 0 if
x /∈ C and 0 < f (x) ≤ 1 for x ∈ C.

As the set {x ∈ R : f (x) 6= 0} is of the first category, f is a function having
the Baire property. Since f−1 ((0, 1)) ∩ (a, b) is a non-empty set of the first category,
using Lemma 3.4, we obtain that f does not have the q-property and, consequently,
by Lemma 3.3, f is not quasi-continuous.

Now we shall prove that B
(
f, 12

)
∩ DQ = ∅. For this purpose we shall prove that

for each n > 2

B

(
f,

1

2
− 1

n

)
∩ DQ = ∅. (3.3)

Let n > 2 and g ∈ B
(
f, 12 − 1

n

)
. Let a′, b′ ∈ (a, b) be such that f (a′) = 0 and

f (b′) = 1. Then g (a′) < 1
2 − 1

n and g (b′) > 1
2 + 1

n . From the Darboux property there
exists a point x ∈ 〈a′, b′〉 such that g (x) = 1

2 . Obviously, x ∈ g−1
((

1
2 − 1

n ,
1
2 + 1

n

))
.

At the same time

g−1
((

1

2
− 1

n
,

1

2
+

1

n

))
∩ (a, b) ⊂ f−1 ((0, 1]) ⊂ C,

so from Lemma 3.4 g does not have the q-property and, consequently, by Lemma 3.3
g is not quasi-continuous. As

B

(
f,

1

2

)
=
∞⋃

n=3

B

(
f,

1

2
− 1

n

)
,

using (3.3) we obtain (ii).
Now let

h(x) =





0 for x ∈ R\
(
a− 1

2 , b+ 1
2

)
,

1
2 for x ∈ [a, b],
linear on the intervals

[
a− 1

2 , a
]
and

[
b, b+ 1

2

]
.

Clearly, h ∈ DQ and ρ (f, h) = 1
2 .
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Lemma 3.6. Let g ∈ DB1 and r ∈ (0, 1). For each ε ∈ (0, r/4) there exists a function
h ∈ DB1 such that

B
(
h,
r

2
− ε
)
⊂ B (g, r) \DQB1.

Proof. Let g ∈ DB1, r ∈ (0, 1) and ε ∈ (0, r/4). Since g ∈ B1, we can find a point x0
such that g is continuous at x0, consequently there exists an interval (a, b) ⊂ R with

diam (g ([a, b])) < 2ε. (3.4)

Put

B =

inf
x∈[a,b]

{g (x)}+ sup
x∈[a,b]

{g (x)}

2
, J =

[
B − r

2
+ ε, B +

r

2
− ε
]

and
A = B − r

2
+ ε.

Then J = [A,A+ r − 2ε]. As ε < r
2 − ε, from (3.4) we obtain

g ([a, b]) ⊂ [B − ε, B + ε] ⊂ J.

Let [a0, b0] ⊂ (a, b) and let f be a function constructed as in Lemma 3.5 for the
interval (a0, b0). Put

h(x) =





g (x) for x ∈ R\ (a, b),

A+ (r − 2ε) f (x) for x ∈ [a0, b0] ,

linear on the intervals [a, a0], [b0, b].

Observe, that ρ(g, h) < r
2 . If x ∈ R\ (a, b), |h (x) − g (x) | = 0. Let x ∈ (a, b). As

h ([a, b]) ⊂ J and g ([a, b]) ⊂ [B − ε, B + ε], we obtain

|h (x)− g (x) | ≤ |h (x)−B|+ |B − g (x) | < r

2
− ε+ ε =

r

2
.

Consequently, ρ(g, h) < r
2 .

From the definition of h it follows that h ∈ DB1.
Now we shall prove that

B
(
h,
r

2
− ε
)
⊂ B (g, r) \DQB1.

Let s ∈ B
(
h, r2 − ε

)
and εs ∈ (ρ (s, h) , r/2− ε). Put

E = s−1 ((sup J − εs, sup J + εs)) ∩ (a0, b0) .

Observe that E 6= ∅. From the construction of f there exists a point x0 ∈ (a0, b0)
such that f (x0) = 1, i.e. h (x0) = A+ (r − 2ε) = supJ . Then

s (x0) ∈ [h (x0)− ρ (s, h) , h (x0) + ρ (s, h)] ⊂ (sup J − εs, sup J + εs) ,

so x0 ∈ E.
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Now we shall prove that
E ⊂ f−1 ((0, 1]) .

Let x ∈ E. Then s (x) ∈ (sup J − εs, sup J + εs), so

h (x) ∈ (sup J − εs − ρ (s, h) , sup J + εs + ρ (s, h)) .

Hence
x ∈ h−1 ((sup J − εs − ρ (s, h) , sup J + εs + ρ (s, h))) ∩ (a0, b0) . (3.5)

At the same time, as ρ (s, h) < εs <
r
2 − ε and sup J = A+ r − 2ε,

(sup J − εs − ρ (s, h) , sup J + εs + ρ (s, h)) ⊂ (A,A+ 2r − 4ε) . (3.6)

From the definition of h

h−1 ((A,A+ 2r − 4ε)) ∩ (a0, b0) ⊂ f−1 ((0, 1]) . (3.7)

Using (3.5), (3.6) and (3.7) we obtain x ∈ f−1 ((0, 1]).
As f is a function vanishing I-a.e., E is a non-empty set of the first category.

From Lemma 3.4 and Lemma 3.3 it follows that s is not quasi-continuous.
Consequently, B

(
h, r2 − ε

)
∩ DQ = ∅.

As ρ(g, h) < r
2 , B

(
h, r2 − ε

)
⊂ B (g, r). Finally,

B
(
h,
r

2
− ε
)
⊂ B (g, r) \DQB1.

Let X be an arbitrary metric space. Assume that B (x, 0) = ∅. FixM ⊂ X, x ∈ X
and r > 0. Let

γ (x, r,M) = sup{t ≥ 0 : ∃z∈XB (z, t) ⊂ B (x, r) \M}.

Define the porosity of M at x as

p (M,x) = 2 lim sup
r→0+

γ (x, r,M)

r
.

Definition 3.7 ([30]). The set M ⊂ X is porous (strongly porous) iff p (M,x) > 0
(p (M,x) = 1) for each x ∈M .

Theorem 3.8. The set DQB1 is strongly porous in (DB1, ρ).

Proof. Let g ∈ DB1, r ∈ (0, 1) and ε ∈ (0, r/4). From Lemma 3.6 it follows that there
exists a function h ∈ DB1 such that B

(
h, r2 − ε

)
⊂ B (g, r) \DQB1. Then

γ (g, r,DQB1) =
r

2

and
p (DQB1, g) = 2 lim sup

r→0+

γ (g, r,DQB1)

r
= 1.
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From the last theorem and from the inclusionDI−ap ⊂ DQ it follows thatDI−apB1
is strongly porous, so also nowhere dense in DB1. The last conclusion is analogous to
the result obtained by Z. Grande, that the set DapB1 is nowhere dense in DB1 (see
[4, Theorem 2]).

In [4] Z. Grande proved that the family DapB1 is not closed under uniform conver-
gence. Indeed there exists a sequence {fn}n∈N of Baire 1 functions in Dap uniformly
convergent to a function f which does not have the ap-Darboux property ([4, Theo-
rem 7]).

By a slightly modification of the proof of Grande we obtain its analogue for I.
Theorem 3.9. There exists a sequence {fn}n∈N of functions in DI−apB1, which is
uniformly convergent to a function f /∈ DI−ap.
Proof. Let A =

⋃
n∈N [an, bn] be a right-hand interval-set at zero, such that 0 is not

an I-dispersion point of A (compare [5]).
For each n ∈ N choose an interval In = [cn, dn] ⊂ (bn+1, an), such that

bn+1+an
2 ∈ (cn, dn), and a continuous function gn : [bn+1, an] → [cn, 1] for which

g (an) = g (bn+1) = 1 and g (x) = x for x ∈ In.
For each k ∈ N put

fk(x) =





1 for x ∈ [b1,∞),
1 for x ∈ [an, bn], n ∈ N,
x for x ∈ (−∞, 0],
gn (x) for x ∈ [bn+1, an], n ∈ N, n < k,
0 for x = bn+1+an

2 , n ∈ N, n ≥ k,
gn (x) for x ∈ [bn+1, cn] ∪ [dn, an], n ∈ N, n ≥ k,
linear on the intervals

[
cn,

bn+1+an
2

]
and

[
bn+1+an

2 , dn

]
, n ∈ N, n ≥ k,

and

f(x) =





1 for x ∈ [b1,∞),
1 for x ∈ [an, bn], n ∈ N,
x for x ∈ (−∞, 0],
gn (x) for x ∈ [bn+1, an], n ∈ N.

Clearly, f and fk, k ∈ N, are continuous at each point x 6= 0, so they are Baire 1
functions and have the Darboux property. Observe that they are not I-approximately
continuous at zero. Let ε ∈ (0, 1) and k ∈ N. The sets f−1 ((−ε, ε)) and f−1k ((−ε, ε))
are contained in R\A, as f (A) = fk (A) = {1}, and 0 is not an I-dispersion point of
A, so 0 is not an I-density point of either f−1 ((−ε, ε)) or f−1k ((−ε, ε)).

At the same time, for each k ∈ N and each open interval containing 0 there
exists a point x 6= 0 such that fk (x) = 0 and fk is continuous at x. Consequently,
fk ∈ DI−apB1 for each k ∈ N.

On the other hand, f−1 ({0}) = {0}, so f /∈ DI−ap.
Clearly, |fk (x) − f (x) | ≤ ak for each x ∈ R and k ∈ N, and limk→∞ ak = 0, so

the sequence {fk}k∈N converges uniformly to f .
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Let A ⊂ P (R), where P (R) is the power set of R.
Definition 3.10 ([7]). We will say that f : R→ R is A-continuous at the point x ∈ R
iff for each open set V ⊂ R with f (x) ∈ V there exists a set A ∈ A such that x ∈ A
and f (A) ⊂ V . We will say that f : R → R is A-continuous if f is A-continuous at
each point x ∈ R.

It is not difficult to see that if A is the Euclidean topology τe, then the notion
of A-continuity is equivalent to continuity in the classical sense. If A is the density
topology τd, then we have approximate continuity. If A is the I-density topology τI ,
then we obtain I-approximate continuity. If A is an arbitrary topology τ on R, then
A-continuity is a form of continuity between (R, τ) and (R, τe). If A is the family of
semi-open sets S, then A-continuity is equivalent to quasi-continuity.

Definition 3.11. We will say that f : R → R has the A-Darboux property iff for
each interval (a, b) ⊂ R and each λ ∈ 〈f (a) , f (b)〉 there exists a point x ∈ (a, b) such
that f (x) = λ and f is A-continuous at x.

Denote the family of all functions having the A-Darboux property by DA. It is
easy to see that: if A is the Euclidean topology τe, then DA = Dτe = Ds; if A is
the density topology τd, then DA = Dτd = Dap; if A is the I-density topology, then
DA = DτI = DI−ap.

The set A is of the first category at the point x iff there exists an open neigh-
bourhood G of x such that A∩G is of the first category (see [11]). We will denote by
D (A) the set of all points x such that A is not of the first category at x.

Let Ba be the family of all sets having the Baire property.

Definition 3.12. We will say that the family A ⊂ P (R) has the (∗)-property iff

1. τe ⊂ A ⊂ Ba,
2. A ⊂ D (A) for each A ∈ A.

It is not difficult to see that a wide class of topologies has the (∗)-property. For
example, the Euclidean topology, I-density topology, topologies constructed in [12] by
E. Łazarow, R. A. Johnson, W. Wilczyński or the topology constructed by Wiertelak
in [27]. Certain families of sets which are not topologies have the (∗)-property: the
family of semi-open sets being an example, but the density topology does not have
this property.

In [7] we proved that if the family A has the (∗)-property, then Ds ⊂ DA ⊂ DQ.
So, if A has the (∗)-property, then we have:

DsB1 ⊂ DAB1 ⊂ DQB1.
Hence, using Theorem 3.8, we obtain the following result.

Theorem 3.13. If A has the (∗)-property, then the set DAB1 is strongly porous in
(DB1, ρ).
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