PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stabilization of a 1-D transmission problem for the Rayleigh beam and string with localized frictional damping

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We are concerned with the stability of a 1-D coupled Rayleigh beam-string transmission system.We obtain the polynomial decay rate t−1 or the exponential decay rate for the given transmission system whether the frictional damping is only effective in the beam part or the string part, respectively. This paper generalizes the recent result in [Y.-F. Li, Z.-J. Han and G.-Q. Xu, Explicit decay rate for coupled string-beam system with localized frictional damping, Appl. Math. Lett. 78 (2018), 51-58]. The main ingredient of the proof is some careful analysis for the Rayleigh beam and string transmission system.
Słowa kluczowe
Wydawca
Rocznik
Strony
77--90
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Faculty of Mathematics, University of Sciences, Pyongyang, Democratic People’s Republic of Korea
autor
  • Institute of Mathematics, State Academy of Sciences, Pyongyang, Democratic People’s Republic of Korea
Bibliografia
  • [1] K. Ammari, M. Jellouli and M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Netw. Heterog. Media 4 (2009), no. 1, 19-34.
  • [2] K. Ammari and S. Nicaise, Stabilization of a transmission wave/plate equation, J. Differential Equations 249 (2010), no. 3, 707-727.
  • [3] K. Ammari and G. Vodev, Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation, Cubo 11 (2009), no. 5, 39-49.
  • [4] W. D. Bastos and C. A. Raposo, Transmission problem for waves with frictional damping, Electron. J. Differential Equations 2007 (2007), Paper No. 60.
  • [5] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann. 347 (2010), no. 2, 455-478.
  • [6] S. Chai, Uniform decay rate for the transmission wave equations with variable coefficients, J. Syst. Sci. Complex. 24 (2011), no. 2, 253-260.
  • [7] S. G. Chai and K. S. Liu, Boundary stabilization of the transmission of wave equations with variable coefficients, Chinese Ann. Math. Ser. A 26 (2005), no. 5, 605-612.
  • [8] S. Chen, K. Liu and Z. Liu, Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping, SIAM J. Appl. Math. 59 (1999), no. 2, 651-668.
  • [9] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 1991.
  • [10] C. Guiver and M. R. Opmeer, Non-dissipative boundary feedback for Rayleigh and Timoshenko beams, Systems Control Lett. 59 (2010), no. 9, 578-586.
  • [11] B. Z. Guo, Basis property of a Rayleigh beam with boundary stabilization, J. Optim. Theory Appl. 112 (2002), no. 3, 529-547.
  • [12] Y.-P. Guo, J.-M. Wang and D.-X. Zhao, Energy decay estimates for a two-dimensional coupled wave-plate system with localized frictional damping, ZAMM Z. Angew. Math. Mech. 100 (2020), no. 2, Article ID e201900030.
  • [13] F. Hassine, Stability of elastic transmission systems with a local Kelvin-Voigt damping, Eur. J. Control 23 (2015), 84-93.
  • [14] F. Hassine, Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 6, 1757-1774.
  • [15] F. Hassine, Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping, Internat. J. Control 89 (2016), no. 10, 1933-1950.
  • [16] F. Hassine, Logarithmic stabilization of the Euler-Bernoulli transmission plate equation with locally distributed Kelvin-Voigt damping, J. Math. Anal. Appl. 455 (2017), no. 2, 1765-1782.
  • [17] K. Kiani, Vibration behavior of simply supported inclined single-walled carbon nanotubes conveying viscous fluids flow using nonlocal Rayleigh beam model, Appl. Math. Model. 37 (2013), no. 4, 1836-1850.
  • [18] J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston, 1994.
  • [19] Y.-F. Li, Z.-J. Han and G.-Q. Xu, Explicit decay rate for coupled string-beam system with localized frictional damping, Appl. Math. Lett. 78 (2018), 51-58.
  • [20] W. Liu and G. Williams, The exponential stability of the problem of transmission of the wave equation, Bull. Aust. Math. Soc. 57 (1998), no. 2, 305-327.
  • [21] L. Lu and J.-M. Wang, Transmission problem of Schrödinger and wave equation with viscous damping, Appl. Math. Lett. 54 (2016), 7-14.
  • [22] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 13 (1959), 115-162.
  • [23] A. J. A. Ramos and M. W. P. Souza, Equivalence between observability at the boundary and stabilization for transmission problem of the wave equation, Z. Angew. Math. Phys. 68 (2017), no. 2, Paper No. 48.
  • [24] B. Rao, A compact perturbation method for the boundary stabilization of the Rayleigh beam equation, Appl. Math. Optim. 33 (1996), no. 3, 253-264.
  • [25] B. Rao, Le taux optimal de décroissance de l’énergie dans l’équation de poutre de Rayleigh, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 737-742.
  • [26] B. Ren, J.-M. Wang and M. Krstic, Stabilization of an ODE-Schrödinger cascade, Systems Control Lett. 62 (2013), no. 6, 503-510.
  • [27] F. Wang and J.-M. Wang, Stability of an interconnected system of Euler-Bernoulli beam and wave equation through boundary coupling, Systems Control Lett. 138 (2020), Article ID 104664.
  • [28] J.-M. Wang and M. Krstic, Stability of an interconnected system of Euler-Bernoulli beam and heat equation with boundary coupling, ESAIM Control Optim. Calc. Var. 21 (2015), no. 4, 1029-1052.
  • [29] J.-M. Wang, B. Ren and M. Krstic, Stabilization and Gevrey regularity of a Schrödinger equation in boundary feedback with a heat equation, IEEE Trans. Automat. Control 57 (2012), no. 1, 179-185.
  • [30] J.-M. Wang, F. Wang and X.-D. Liu, Exponential stability of a Schrödinger equation through boundary coupling a wave equation, IEEE Trans. Automat. Control 65 (2020), no. 7, 3136-3142.
  • [31] J.-M. Wang, G.-Q. Xu and S.-P. Yung, Exponential stability of variable coefficients Rayleigh beams under boundary feedback controls: A Riesz basis approach, Systems Control Lett. 51 (2004), no. 1, 33-50.
  • [32] G. Weiss and R. F. Curtain, Exponential stabilization of a Rayleigh beam using collocated control, IEEE Trans. Automat. Control 53 (2008), no. 3, 643-654.
  • [33] C.-G. Zhang, Energy decay estimates of the Rayleigh beam with a pointwise feedback, Gongcheng Shuxue Xuebao 24 (2007), no. 6, 1109-1116.
  • [34] Q. Zhang, On the lack of exponential stability for an elastic-viscoelastic waves interaction system, Nonlinear Anal. Real World Appl. 37 (2017), 387-411.
  • [35] Q. Zhang, J.-M. Wang and B.-Z. Guo, Stabilization of the Euler-Bernoulli equation via boundary connection with heat equation, Math. Control Signals Systems 26 (2014), no. 1, 77-118.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3558f966-e90b-4da8-868d-106ed0133d4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.