PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The modal analysis of a two-link mechanical system of a robot manipulator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The method of calculation of natural frequencies and forms of oscillations of a two-link mechanical system of a robot manipulator is proposed. Links of the system are considered as straight rods with a step change of cross-sectional parameters. The equations of motion of a mechanical system are based on the technical bending theory. The analysis of oscillation processes is carried out using the matrix method of initial parameters.
Czasopismo
Rocznik
Strony
art. no. 2022204
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Lviv Polytechnic National University, S. Bandery Str. 12, 79013 Lviv, Ukraine
  • Lviv Polytechnic National University, S. Bandery Str. 12, 79013 Lviv, Ukraine
  • Lviv Polytechnic National University, S. Bandery Str. 12, 79013 Lviv, Ukraine
  • Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Naukova Str. 5, 79060 Lviv, Ukraine
Bibliografia
  • 1. Frączek J, Wojtyra M. Kinematyka układów wieloczłonowych. WNT Warszawa, 2008.
  • 2. Hamid Abdi, Saeid Nahavandi. Well-conditioned configurations of fault-tolerant manipulators. Robotics and Autonomous Systems. 2012;60:242-251. https://doi.org/10.1016/j.robot.2011.10.008
  • 3. Korayem MH, Irani M, Rafee Nekoo S. Load maximization of flexible joint mechanical manipulator using nonlinear optimal controller. Acta Astronautica. 2011;69:458-469. https://doi.org/10.1016/j.actaastro.2011.05.023.
  • 4. Yundou Xu, Jiantao Yao, Yongsheng Zhao. Inverse dynamics and internal forces of the redundantly actuated parallel manipulators. Mechanism and Machine Theory. 2012;51:172-184. https://doi.org/10.1016/j.mechmachtheory.2011.12.0 11.
  • 5. Zhao Jing, Yao Xuebin, Zhang Lei. The optimization of initial posture with avoidance of the sudden change in joint velocity for fault tolerant operations of two coordinating redundant manipulators. Mechanism and Machine Theory. 2005;40:659-668.
  • 6. Xin-Jun Liu, Jinsong Wang, Hao-Jun Zheng. Optimum design of the 5R symmetrical parallel manipulator with a surrounded and good-condition workspace. Robotics and Autonomous Systems. 2006; 54: 221-233.
  • 7. Jing-Shan Zhao, Min Chen, Kai Zhou, Jing-Xin Dong, Zhi-Jing Feng. Workspace of parallel manipulators with symmetric identical kinematic chains,” Mechanism and Machine Theory, vol. 41, pp. 632-645, 2006. https://doi.org/10.1016/j.mechmachtheory.2005.09.007.
  • 8. Naveen Kumar, Vikas Panwar, Sukavanam Nagarajan, SP. Sharma, and Jin-Hwan Borm. Neural network-based nonlinear tracking control of kinematically redundant robot manipulators Mathematical and Computer Modelling. 2011;53: 1889-1901, 2011. https://doi.org/10.1016/j.mcm.2011.01.014.
  • 9. Korayem MH, Azimirad V, Tabibian B, Abolhasani M. Analysis and experimental study of nonholonomic mobile manipulator in presence of obstacles for moving boundary condition. Acta Astronautica. 2010;67:659-672. https://doi.org/10.1007/s13369-014-0974-1.
  • 10. Akira Abe. Trajectory planning for residual vibration suppression of a two-link rigid-flexible manipulator considering large deformation. Mechanism and Machine Theory. 2009;44:1627-1639. https://doi.org/10.1016/j.mechmachtheory.2009.01.009.
  • 11. Z. X. Shi, Eric H. K. Fung, and Y. C. Li, “Dynamic modelling of a rigid-exible manipulator for constrained motion task control,” Applied Mathematical Modelling, vol. 23, pp. 509-525, 1999. https://doi.org/10.1016/S0307-904X(98)10096-3.
  • 12. Korayem ZH, Ghariblu H. Analysis of wheeled mobile flexible manipulator dynamic motions with maximum load carrying capacities. Robotics and Autonomous Systems. 2004;48:63-76. https://doi.org/ 10.1007/s11340-015-0014-4.
  • 13. Mete Kalyoncu. Mathematical modelling and dynamic response of a multistraight-line path tracing flexible robot manipulator with rotating-prismatic joint. Applied Mathematical Modelling. 2008;32: 1087-1098. https://doi.org/10.1016/j.apm.2007.02.032.
  • 14. Chepil R, Vira V, Kulyk V, Kharchenko Y, Duriagina Z. The peculiarities of fatigue process zone formation of structural materials. Diagnostyka. 2018;19(4):27-32. https://doi.org/10.29354/diag/94754.
  • 15. Ostash OP, Andreiko IM, Kulyk VV, Uzlov IH, Babachenko OI. Fatigue durability of steels of railroad wheels. Materials Science. 2007;43(3): 403-414, 2007. https://doi.org/10.1007/s11003-007-0046-8.
  • 16. Kharchenko Y, Dragun Ł. Mathematical modeling of unsteady processes in electromechanical system of ring-ball mill. Diagnostyka. 2017;18(1):25-35.
  • 17. Kharchenko L, Kharchenko Y. Fluktuations of multisection aboveground pipeline region under the influence of moving diagnostic piston. Vibrations in Phisical Systems. 2014;26:105-112.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35573f31-666e-4b69-b3b0-b53f448407bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.