Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Combustion engines are the main driving force of passenger cars, trucks or buses. Engines burn fuels, and as a side effect, release many pollutions to the atmosphere. Car manufacturers had been aware of a need of lowering the amount of exhaust fumes. This brought on the market the first catalytic converters. Nowadays automobile catalyst manufacturing is the largest sector of demand of PGMs (mainly platinum, palladium and rhodium), and unfortunately consumption and future demand of there critical metals is getting higher. Over the past two decades, most countries around the world have developed and implement solutions that would minimize the impact of the growing number of cars on the environment. One solution contributing to this is the organisation of an end-of-life car collection and recycling network, which is now an integral part of automotive industry. The main drivers for the development of such network were stricter environmental regulations and economic conditions. The development of recycling is also becoming more popular in Poland. However, catalyst recycling system is still not transparent to all stakeholders. Due to the huge variety of catalysts and their different structure and composition of elements from the PGMs group, the valuation of their price before they are recycled is not obvious. This raises a lot of controversy and does not inspire trust among those who recycle their catalysts. The aim of this work is to show how the management of used catalytic converters looks like in Poland and how developed is network of catalysts recycling in Poland. At the same time this will show how important it is in terms of a circular economy and the recovery of valuable raw materials from a group of PGMs.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
149--156
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
- Msc Eng.; Mineral and Energy Economy Research Institute Polish Academy of Sciences, ul. J.Wybickiego 7A 31-261 Kraków, Poland
Bibliografia
- [1] Abo Atia, T., & Spooren, J. (2021). Fast microwave leaching of platinum, rhodium and cerium from spent non-milled autocatalyst monolith. Chemical Engineering and Processing - Process Intensification, 164, 108378. https://doi.org/10.1016/j.cep.2021.108378
- [2] Antonov, A., Tietz, A., Kirichenko, A., Polyakov, N., Ehrenburg, M., & Botryakova, I. (2020). Electrochlorination method for iron collector recycling. Materials Today: Proceedings, 30. https://doi.org/10.1016/j.matpr.2019.12.395
- [3] Bahaloo-Horeh, N., & Mousavi, S. M. (2020). Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. Journal of Hazardous Materials, 400, 123186. https://doi.org/10.1016/j.jhazmat.2020.123186
- [4] Ciuła, J., Kozik, V., Generowicz, A., Gaska, K., Bak, A., Paździor, M., & Barbusiński, K. (2020). Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis. Energies, 13(23), 6254. https://doi.org/10.3390/en13236254
- [5] Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C., & Ekberg, C. (2019). Recovery of precious metals from electronic waste and spent catalysts: A review. Resources, Conservation and Recycling, 141, 284-298. https://doi.org/10.1016/j.resconrec.2018.10.041
- [6] Generowicz, N. (2020). Overview of selected natural gas drying methods. Architecture, Civil Engineering, Environment, 13(3), 73-83. https://doi.org/10.21307/ACEE-2020-025
- [7] Ding, Y., Zheng, H., Zhang, S., Liu, B., Wu, B., & Jian, Z. (2020). Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resources, Conservation and Recycling, 155, 104644. https://doi.org/10.1016/j.resconrec.2019.104644
- [8] DIRECTIVE 2000/53/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 September 2000 on end-of life vehicles
- [9] Generowicz, N., & Kulczycka, J. (2020). Recovery of tantalum from different resources. Architecture, Civil Engineering, Environment, 13(4), 79-84. https://doi.org/10.21307/ACEE-2020-031
- [10] Eskina, V., Dalnova, O., Filatova, D., Baranovskaya, V., & Karpov, Y. (2020). Direct precise determination of Pd, Pt and Rh in spent automobile catalysts solution by high-resolution continuum source graphite furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 165, 105784. https://doi.org/10.1016/j.sab.2020.105784
- [11] Sobiecka, E. (2016). Thermal and physicochemical technologies used in hospital incineration fly ash utilization before landfill in Poland. Journal of Chemical Technology and Biotechnology, 91(9), 2457-2461.
- [12] Fajar, A. T. N., Hanada, T., & Goto, M. (2021). Recovery of platinum group metals from a spent automotive catalyst using polymer inclusion membranes containing an ionic liquid carrier. Journal of Membrane Science, 629, 119296. https://doi.org/10.1016/j.memsci.2021.119296
- [13] Gaska, K., & Wandrasz, A. J. (2008). Mathematical modeling of biomass fuels formation process. Waste Management, 28(6), 973-985. https://doi.org/10.1016/j.wasman.2007.03.025
- [14] Generowicz, N., Kulczycka, J., Partyka, M., & Saługa, K. (2021). Key Challenges and Opportunities for an Effective Supply Chain System in the Catalyst Recycling Market-A Case Study of Poland. Resources, 10(2), 13. https://doi.org/10.3390/resources10020013
- [15] Home - Precious Metals Management. (n.d.). Retrieved December 21, 2021, from http://www.platinum.matthey.com/
- [16] Hong, H.-J., Yu, H., Hong, S., Hwang, J. Y., Kim, S. M., Park, M. S., & Jeong, H. S. (2020). Modified tunicate nanocellulose liquid crystalline fiber as closed loop for recycling platinum-group metals. Carbohydrate Polymers, 228, 115424. https://doi.org/10.1016/j.carbpol.2019.115424
- [17] Karim, S., & Ting, Y.-P. (2020). Ultrasound-assisted nitric acid pretreatment for enhanced biorecovery of platinum group metals from spent automotive catalyst. Journal of Cleaner Production, 255, 120199. https://doi.org/10.1016/j.jclepro.2020.120199
- [18] Kontogeorgis, G. M., Yakoumis, I. V., Coutsikos, P., & Tassios, D. P. (1997). A generalized expression for the ratio of the critical temperature to the critical pressure with the van der Waals surface area. Fluid Phase Equilibria, 140(1), 145-156. https://doi.org/10.1016/S0378-3812(97)00174-X
- [19] Lee, J. Y., Raju, B., Kumar, B. N., Kumar, J. R., Park, H. K., & Reddy, B. R. (2010). Solvent extraction separation and recovery of palladium and platinum from chloride leach liquors of spent automobile catalyst. Separation and Purification Technology, 73(2), 213-218. https://doi.org/10.1016/j.seppur.2010.04.003
- [20] Saguru, C., Ndlovu, S., & Moropeng, D. (2018). A review of recent studies into hydrometallurgical methods for recovering PGMs from used catalytic converters. Hydrometallurgy, 182, 44-56. https://doi.org/10.1016/j.hydromet.2018.10.012
- [21] Sharma, R., Simonsen, S. B., Morgen, P., & Andersen, S. M. (2019). Inhibition of Ostwald ripening through surface switching species during potentiodynamic dissolution of platinum nanoparticles as an efficient strategy for platinum group metal (PGM) recovery. Electrochimica Acta, 321, 134662. https://doi.org/10.1016/j.electacta.2019.134662
- [22] Tang, H., Peng, Z., Li, Z., Ma, Y., Zhang, J., Ye, L., Wang, L., Rao, M., Li, G., & Jiang, T. (2021). Recovery of platinum-group metals from spent catalysts by microwave smelting. Journal of Cleaner Production, 318, 128266. https://doi.org/10.1016/j.jclepro.2021.128266
- [23] International Platinium Group Metals Association. THE LIFE CYCLE ASSESSMENT OF PLATINUM GROUP METALS (PGMs) https://ipa-news.de/assets/sustainability/LCA%20Fact%20Sheet_LR.pdf
- [24] Tarver, S., Gray, D., Loponov, K., Das, D. B., Sun, T., & Sotenko, M. (2019). Biomineralization of Pd nanoparticles using Phanerochaete chrysosporium as a sustainable approach to turn platinum group metals (PGMs) wastes into catalysts. International Biodeterioration & Biodegradation, 143, 104724. https://doi.org/10.1016/j.ibiod.2019.104724
- [25] Trinh, H. B., Lee, J., Srivastava, R. R., & Kim, S. (2019). Total recycling of all the components from spent auto-catalyst by NaOH roasting-assisted hydrometallurgical route. Journal of Hazardous Materials, 379, 120772. https://doi.org/10.1016/j.jhazmat.2019.120772
- [26] Vasile, E., Ciocanea, A., Ionescu, V., Lepadatu, I., Diac, C., & Stamatin, S. N. (2021). Making precious metals cheap: A sonoelectrochemical - Hydrodynamic cavitation method to recycle platinum group metals from spent automotive catalysts. Ultrasonics Sonochemistry, 72, 105404. https://doi.org/10.1016/j.ultsonch.2020.105404
- [27] Wei, X., Liu, C., Cao, H., Ning, P., Jin, W., Yang, Z., Wang, H., & Sun, Z. (2019). Understanding the features of PGMs in spent ternary automobile catalysts for development of cleaner recovery technology. Journal of Cleaner Production, 239, 118031. https://doi.org/10.1016/j.jclepro.2019.118031
- [28] Yakoumis, I., Moschovi, A. M., Giannopoulou, I., & Panias, D. (2018). Real life experimental determination of platinum group metals content in automotive catalytic converters. IOP Conference Series: Materials Science and Engineering, 329, 012009. https://doi.org/10.1088/1757-899X/329/1/012009
- [29] Yakoumis, I., Moschovi, A., Panou, M., & Panias, D. (2020). Single-Step Hydrometallurgical Method for the Platinum Group Metals Leaching from Commercial Spent Automotive Catalysts. Journal of Sustainable Metallurgy, 6. https://doi.org/10.1007/s40831-020-00272-9
- [30] Zhang, L., Song, Q., Liu, Y., & Xu, Z. (2019). Novel approach for recovery of palladium in spent catalyst from automobile by a capture technology of eutectic copper. Journal of Cleaner Production, 239, 118093. https://doi.org/10.1016/j.jclepro.2019.118093
- [31] GUS - Bank Danych Lokalnych. (n.d.). Retrieved December 22, 2021, from https://bdl.stat.gov.pl/BDL/metadane/cechy/szukaj?sl owo=samochody
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3555ecc3-9ac0-4739-907a-8c3227aeb302