PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Reverberant Properties of Enclosures via a Method Employing a Modal Representation of the Room Impulse Response

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A theoretical method has been presented to describe sound decay in enclosures and simulate the room impulse response (RIR) employed for prediction of the indoor reverberation characteristics. The method was based on a solution of wave equation with the form of a series whose time-decaying components represent responses of acoustic modes to an impulse sound source. For small sound absorption on room walls this solution was found by means of the method of variation of parameters. A decay function was computed via the time-reverse integration of the squared RIR. Computer simulations carried out for a rectangular enclosure have proved that the RIR function reproduces the structure of a sound field in the initial stage of sound decay sufficiently well. They have also shown that band-limitedness of the RIR has evident influence on the shape of the decay function and predicted decay times.
Rocznik
Strony
27--41
Opis fizyczny
Bibliogr. 50 poz., tab., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warszawa, Poland
Bibliografia
  • 1. Aretz M., Dietrich P., Vorländer M. (2014), Application of the mirror source method for low frequency sound prediction in rectangular rooms, Acta Acustica united with Acustica, 100, 2, 306–319.
  • 2. Bradley D., Wang L. (2005), The effects of simple coupled volume geometry on the objective and subjective results from nonexponential decay, Journal of the Acoustical Society of America, 118, 3, 1480–1490.
  • 3. Bradley D., Wang L. (2010), Optimum absorption and aperture parameters for realistic coupled volume spaces determined from computational analysis and subjective testing results, Journal of the Acoustical Society of America, 127, 1, 223–232.
  • 4. Collins P. (2006), Differential and integral equations, Oxford University Press, New York, Chap. 4.1.
  • 5. Dance S., Roberts J., Shield B. (1995), Computer prediction of sound distribution in enclosed spaces using an interference pressure model, Journal of Sound and Vibration, 44, 1, 53–65.
  • 6. Dance S., Van Buuren G. (2013), Effects of damping on the low-frequency acoustics of listening rooms based on an analytical model, Journal of Sound and Vibration, 332, 25, 6891–6904.
  • 7. Dowell E., Gorman III G., Smith D. (1977), Acoustoelasticity: general theory, acoustic natural modes and forced response to sinusoidal excitation, including comparison to experiment, Journal of Sound and Vibration, 52, 2, 519–542.
  • 8. Dowell E. (1978), Reverberation time, absorption, and impedance, Journal of the Acoustical Society of America, 64, 1, 181–191.
  • 9. Easwaran V., Craggs A. (1996a), An application of acoustic finite element models to finding the reverberation times of irregular rooms, Acustica, 82, 1, 54–64.
  • 10. Easwaran V., Craggs A. (1996b), Transient response of lightly damped rooms: A finite element approach, Journal of the Acoustical Society of America, 99, 1, 108–113.
  • 11. Ermann M. (2007) Double sloped decay: subjective listening test to determine perceptibility and preference, Building Acoustics, 14, 2, 91–108.
  • 12. Félix S., Asch M., Filoche M., Sapoval B. (2007), Localization and increased damping in irregular acoustic cavities, Journal of Sound and Vibration, 299, 4-5, 965–976.
  • 13. Franzoni L., Bliss D., Rouse J. (2001), An acoustic boundary element method based on energy and intensity variables for prediction of high-frequency broadband sound fields, Journal of the Acoustical Society of America, 110, 6, 3071–3080.
  • 14. Funkhouser T., Tsingos N., Carlbom I., Elko G., Sondhi M., West J., Pingali G., Min P., Ngan A. (2004), A beam tracing method for interactive architectural acoustics, Journal of the Acoustical Society of America, 115, 1, 739–756.
  • 15. ISO 3382 (2012), Acoustics – Measurement of room acoustic parameters. Part 1: Performance spaces. Part 2: Reverberation time in ordinary rooms, International Organization for Standardization, Géneve.
  • 16. Kinsler L., Frey A., Coppens A., Sander J. (2000), Fundamentals of acoustics, 4th. ed., John Wiley & Sons, New York, p. 351.
  • 17. Kubota Y., Dowell E. (1992) Asymptotic modal analysis for sound fields of a reverberant chamber, Journal of the Acoustical Society of America, 92, 2, 1106–1112.
  • 18. Kuttruff H. (2009), Room acoustics, 5th ed., Spon Press, New York, pp. 78, 95, 98.
  • 19. Laine S., Siltanen S., Lokki T., Savioja L. (2009), Accelerated beam tracing algorithm, Applied Acoustics, 70, 1, 172–181.
  • 20. Lehmann E., Johansson A. (2009), Prediction of energy decay in room impulse responses simulated with an image-source model, Journal of the Acoustical Society of America, 124, 1, 269–277.
  • 21. Li Y., Cheng L. (2004), Modifications of acoustic modes and coupling due to a leaning wall in a rectangular cavity, Journal of the Acoustical Society of America, 116, 6, 3312–3318.
  • 22. López J., Carnicero D., Ferrando N., Escolano J. (2013), Parallelization of the finite-difference time-domain method for room acoustics modelling based on CUDA, Mathematical and Computer Modelling, 57, 7–8, 1822–1831.
  • 23. Luizard P., Polack J-P., Katz B. (2014), Sound energy decay in coupled spaces using a parametric analytical solution of a diffusion equation, Journal of the Acoustical Society of America, 135, 5, 2765–2776.
  • 24. Mechel F. (2002), Improved mirror source method in room acoustics, Journal of Sound and Vibration, 256, 5, 873–940.
  • 25. Meissner M. (2009a), Computer modelling of coupled spaces: variations of eigenmodes frequency due to a change in coupling area, Archives of Acoustics, 34, 2, 157–168.
  • 26. Meissner M. (2009b), Spectral characteristics and localization of modes in acoustically coupled enclosures, Acta Acustica united with Acustica, 95, 2, 300–305.
  • 27. Meissner M. (2010), Simulation of acoustical properties of coupled rooms using numerical technique based on modal expansion, Acta Physica Polonica A, 118, 1, 123–127.
  • 28. Meissner M. (2012), Acoustic energy density distribution and sound intensity vector field inside coupled spaces, Journal of the Acoustical Society of America, 132, 1, 228–238.
  • 29. Meissner M. (2013a), Evaluation of decay times from noisy room responses with pure-tone excitation, Archives of Acoustics, 38, 1, 47–54.
  • 30. Meissner M. (2013b), Acoustic behaviour of lightly damped rooms, Acta Acustica united with Acustica, 99, 5, 845–847.
  • 31. Meissner M. (2015a), Numerical investigation of sound field in enclosures: Evaluation of active and reactive components of sound intensity, Journal of Sound and Vibration, 338, 154–168.
  • 32. Meissner M. (2015b), Theoretical and numerical determination of low-frequency reverberant characteristics of coupled rooms, Journal of Vibration and Acoustics-Transactions of the ASME, 137, 4, 041013-1–9.
  • 33. Morse P., Bolt R. (1944), Sound waves in rooms, Reviews of Modern Physics, 16, 2, 69–150.
  • 34. Morse P., Feshbach H. (1953), Methods of theoretical physics, McGraw-Hill, New York, pp. 804, 837.
  • 35. Murphy D., Southern A., Savioja L. (2014), Source excitation strategies for obtaining impulse responses in finite difference time domain room acoustics simulation, Applied Acoustics, 82, 6–14.
  • 36. Okuzono T., Otsuru T., Tomiku R., Okamoto N. (2014), A finite-element method using dispersion reduced spline elements for room acoustics simulation, Applied Acoustics, 79, 1–8.
  • 37. Raghuvanshi N., Narain R., Lin M. (2009), Efficient and accurate sound propagation using adaptive rectangular decomposition, IEEE Transactions on Visualization and Computer Graphics, 15, 5, 789–801.
  • 38. Sakamoto S., Nagatomo H., Ushiyama A., Tachibana H. (2008), Calculation of impulse responses and acoustic parameters in a hall by the finite-difference time-domain method, Acoustical Science and Technology, 29, 4, 256–265.
  • 39. Sakuma T., Yasuda Y. (2002), Fast multipole boundary element method for large-scale steady-state sound field analysis. Part I: setup and validation, Acta Acustica united with Acustica, 88, 4, 513–525.
  • 40. Schroeder M. (1965), New method of measuring reverberation time, Journal of the Acoustical Society of America, 37, 3, 400–412.
  • 41. Schroeder M. (1996), The “Schroeder frequency” revisited, Journal of the Acoustical Society of America, 99, 5, 3240–3241.
  • 42. Skålevik M. (2011), Schroeder frequency revisited, Proceedings of Forum Acusticum 2011, Aalborg, Denmark.
  • 43. Spa C., Garriga A., Escolano J. (2010), Impedance boundary conditions for pseudo-spectral time-domain methods in room acoustics, Applied Acoustics, 71, 6, 402–410.
  • 44. Sum K., Pan J. (2006), Geometrical perturbation of an inclined wall on decay times of acoustic modes in a trapezoidal cavity with an impedance surface, Journal of the Acoustical Society of America, 120, 6, 3730–3743.
  • 45. Summers J., Torres R., Shimizu Y. (2004), Statistical-acoustics models of energy decay in systems of coupled rooms and their relation to geometrical acoustics, Journal of the Acoustical Society of America, 116, 2, 958–969.
  • 46. Summers J., Torres R., Shimizu Y., Dalenbäk B. (2005), Adapting a randomized beam-axis-tracing algorithm to modeling of coupled rooms via late-part ray tracing, Journal of the Acoustical Society of America, 118, 3, 1491–1502.
  • 47. Summers J. (2012), Accounting for delay of energy transfer between coupled rooms in statistical-acoustics models of reverberant-energy decay, Journal of the Acoustical Society of America, 132, 2, 129–134.
  • 48. Szemela K. (2015), Sound radiation from a surface source located at the bottom of the wedge region, Archives of Acoustics, 40, 2, 223–234.
  • 49. Xiang N., Yun Jing Y., Bockman A. (2009), Investigation of acoustically coupled enclosures using a diffusion-equation model, Journal of the Acoustical Society of America, 126, 3, 1187–1198.
  • 50. Xu B., Sommerfeldt S. (2010), A hybrid modal analysis for enclosed sound fields, Journal of the Acoustical Society of America, 128, 5, 2857–2867.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3550daef-3d00-45ac-bb95-9d4f37a49b91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.