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1. Introduction

Unexpected system failures pose significant problems in power 
industry and most manufacturing companies. In some cases, a critical 
component failure can incur catastrophic events and huge economic 
loss. To maintain machines at high level of reliability, some companies 
perform time-based preventive maintenance or age-based preventive 
maintenance to avoid sudden failure of machines. Usually, preventive 
maintenance tasks includes lubrication, cleaning, inspection, adjust-
ment, alignment and/or replacement [25]. Even though above main-
tenance schemes may decline the probability of sudden downtime to 
some extent, high maintenance cost may be generated due to frequent 
“over maintenance”. Some companies hold lots of spare parts inven-
tory in case the shortage of spare parts for maintenance actions. If the 
spares ordering is inappropriate, companies have to suffer high inven-
tory quantity or high inventory holding cost. 

A widely accepted view of decreasing unnecessary cost, including 
maintenance cost, inventory cost and equipment failure loss, is to per-
form condition-based maintenance on critical components. Recently, 
condition based maintenance has been studied extensively as one of 
the most important maintenance method. To guarantee the effective-
ness and economy of maintenance, a new failure probability estima-
tion function is established based on a novel remaining useful life 
prediction using condition monitoring signal to date. The estimated 
failure probability is the basis of replacement determination which 
is related to jointly optimize replacement time and spare ordering. 
In terms of spare ordering, spares should be ordered at right time to 
trade off spares shortage cost and inventory holding cost. Therefore, 
the reasonable decisions for replacement and spare ordering should 
include when to perform replacement and purchase spare parts. All 
the decisions are based on accurate failure prediction. The main con-
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Wspólna optymalizacJa Wymiany i zamaWiania części zamiennych 
dla krytycznego komponentu obrotoWego 

na podstaWie dotychczasoWego sygnału stanu
It is widely accepted that condition-based replacement can not only make full use of components, but also decline inventory cost 
if the procurement of spare parts can be triggered upon accurate failure prediction. Most of the existing degradation or failure 
prediction models and approaches are population-based failures or suspensions, namely, to predict the failure time of a compo-
nent, there are some failure or suspension histories of same type or similar components which can be used as reference. However, 
in practice, there exists the phenomenon in which no failure or suspension histories for some components can be used, what can 
be utilized is just the collected condition monitoring signals to date. In that case, failure time and probability are difficult to be 
estimated accurately. In this paper, a novel degradation prediction approach is introduced. Meantime, a new failure probability 
estimation function is developed based on component “service time” and “degradation extent” simultaneously. Then replacement 
and spare part ordering are jointly optimized according to the estimated failure probability. The optimization objective is to mini-
mize long-run cost rate. Two bearing datasets are used to validate the proposed approach. 
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Powszechnie przyjmuje się, że  wymiana w oparciu o stan techniczny pozwala nie tylko na pełne wykorzystanie elementów skła-
dowych, ale także na zmniejszenie kosztów magazynowych (związanych z przechowywaniem zapasów) jeśli zamawianie części 
zamiennych da się powiązać z trafnym prognozowaniem uszkodzeń. Większość istniejących modeli i teorii predykcji degradacji 
lub uszkodzeń opiera się na danych populacyjnych o uszkodzeniach lub zawieszeniu pracy co oznacza,  że czas uszkodzenia kom-
ponentu przewiduje się w odniesieniu do historii uszkodzeń lub zawieszeń pracy tego samego typu lub podobnego typu elementów 
składowych. Jednak w praktyce zdarza się, że dla niektórych komponentów nie istnieją historie uszkodzeń lub zawieszenia pracy, 
do których można by się odnieść; jedyne co można wykorzystać to zgromadzone dotychczas sygnały z monitorowania stanu. W 
takim przypadku, trudno jest ocenić dokładnie czas i prawdopodobieństwo wystąpienia uszkodzenia. W niniejszej pracy, przed-
stawiono nowatorskie podejście do przewidywania degradacji. Opracowano nową funkcję szacowania prawdopodobieństwa 
uszkodzenia opartą na jednoczesnym wykorzystaniu "czasu pracy" oraz "stopnia degradacji" komponentu. Następnie wspólnie 
zoptymalizowano procesy wymiany i zamawiania części zamiennych zgodnie z  szacowanym prawdopodobieństwem wystąpienia 
uszkodzenia. Celem optymalizacji była minimalizacja długoterminowego wskaźnika kosztów . Poprawność proponowanego po-
dejścia zweryfikowano z wykorzystaniem dwóch zbiorów danych dotyczących łożysk.

Słowa kluczowe: prognozowanie degradacji, prawdopodobieństwo wystąpienia uszkodzenia, wymiana w opar-
ciu o stan, zamawianie części zamiennych.
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tribution is that this method focuses on the situation in which a criti-
cal component without failure or suspension histories of same type 
components. 

Due to the importance of RUL prediction, many scholars pro-
posed different methods or models for various applications. Lee et 
al. [6] reviewed the methodologies and applications of prognostics 
and health management design for rotary machinery systems. Li et 
al. [7] analyzed products reliability using unbalanced data, in which 
unbalanced data means the number and time of measurements are 
not identical for degradation units. Roughly, the existing work can 
be divided into two classes, one class is the prediction models and 
methods are population-based, which means there are failure or sus-
pension histories of same type components can be used. The other 
class is individual-based, which uses the collected individual condi-
tion monitoring signal to date. Defined by Tian et al. [15], a failure 
history means that a component is replaced with a new one due to its 
failure. A suspension history refers that a component is replaced by a 
new component before its failure and never used again. Wu et al. [26] 
optimized condition-based maintenance using prognosis information 
with consideration of prediction uncertainty which is estimated by the 
artificial neural network (ANN) lifetime prediction errors during the 
ANN training and testing processes. Zhang et al. [28] made the main-
tenance decision based on the Bayesian belief network prediction re-
sults using failure data. Lu et al [9] predicted bearing remaining useful 
life only using truncated histories. All the works above are mainly 
population-based to predict RUL. 

In practice, some components cannot obtain failure or suspension 
histories of same type or similar components, for example, high reli-
ability requirement and unique designed work. In this case, failure 
prediction is difficult, especially for an individual. Because no failure 
or suspension histories can be used to reflect the degradation proc-
ess during whole lifecycle of components. The prediction models or 
methods are hard to be developed because the parameters and network 
constructions cannot be estimated appropriately. Works on this area 
are few and limited. Di Maio et al [1] proposed a relevance vector 
machines and exponential regression method to estimate bearing re-
maining useful life. The results show that the prediction result can be 
more accurate if more data is collected. While, at the beginning of 
prediction, the difference between real values and predicted values is 
big. Xiao et al [27] proposed a novel bearing degradation approach 
based on shrunken time windows and back-propagation neural net-
work (BPNN). The prediction method uses limited amount of col-
lected condition monitoring data for a component to date. 

Maintenance is not only related to component condition, it has 
a strong interconnection with the availability of spare parts. Van 
Horenbeek et al. [16] summarized the joint optimization of mainte-
nance and inventory from the views of inventory policy, maintenance 
characteristics, delays, multi-echelon networks, single-unit versus 
multi-unit systems, objective function and optimization techniques. 
Wang [19] determined preventive maintenance interval, spare order 
interval and order quantity simultaneously. Spare parts are ordered 
periodically instead on demand. Nguyen et al. [12] studied the im-
pact of the spare parts inventory level on maintenance and replace-
ment decisions under technological change rather than determining 
optimal order level/order quantity for spare parts. Panagiotidou [13] 
performed periodically inspection and preventive maintenance to the 
detected items. Meanwhile, two types of silent failures are considered 
when optimizing spare parts ordering and maintenance policies. Gan 
and Shi [3] considered replacement part order and buffer inventory 
when optimizing the maintenance policy for the upstream machine. 
System and decision process are modeled by discrete Markov method 
with the minimal expected cost rate control-limit policy. Zhang et al. 
[29] utilized the semi-Markov decision process to propose a mainte-
nance optimization. Wang et al. [17, 18] proposed condition-based 
replacement and spare provisioning policies for deterioration systems. 

Rausch and Liao [14] addressed a joint production and spare part in-
ventory driven by condition based maintenance. However, these joint 
decision policies do not utilize the updated RUL prediction from ob-
served information. Some other works focus on the joint optimization 
of periodic preventive maintenance/periodic replacement and spare 
inventory/ordering [5, 10, 20].

In recent decades, the sensor technology is developed and enables 
to conduct system health monitoring, the condition-based or sensor-
based maintenance planning and spare ordering seems more reason-
able. Elwany & Gebraeel [2] proposed a two-phase optimization for 
replacement and spare parts ordering. First, the replacement time is 
determined, then the spare ordering time is followed, accordingly. 
Most of the condition-based decision is using the population-based 
failure or suspension histories to approach the system failure. Wang 
et al. [22, 24] presented a prognostics-based spare part ordering and 
system replacement (PSOSR) policy. The spare part ordering time and 
the system replacement time is real-time determined according to the 
actual health condition. Recently, there is a few researches about the 
joint optimization of replacement and spare ordering that utilizing the 
online condition monitoring. Louit et al. [8] considered condition-
based monitoring and optimized the spares ordering time. Wang et al. 
[23] proposed a prognostic-information-based joint order-replacement 
policy for a non-repairable critical system in service.

Even though there are some research on the joint optimization of 
replacement and spare ordering, the research is still deficient. This 
paper is an integrated view from RUL prediction to joint optimization 
of replacement and spare ordering. Mainly, this paper focuses on the 
situation in which no failure or suspension histories can be used for 
a single critical component. What can be used is only the collected 
condition monitoring data to date. A novel approach for degradation 
and RUL prediction from Xiao et al [27] is introduced. Then, a new 
failure probability function is defined based on “service time” and 
“degradation extent”. According to the estimated failure probability, 
replacement and spare ordering are optimized simultaneously with the 
objective of minimizing the long-run expected cost per unit time. Dif-
ferent from the existing research, this paper focuses on the degradation 
properties of individual component. The introduced RUL prediction 
method can predict system degradation in the early phase of lifecycle 
with limited amount of data. Moreover, most of the existing failure 
probability estimation methods use population-based failure or sus-
pension histories, the proposed failure probability estimation function 
connects system “service time” with “degradation extent”. Owing to 
failure probability, the balance among preventive replacement, failure 
replacement, spare part shortage cost, and inventory holding cost are 
traded-off in the view of individual component lifecycle horizon.   

This paper is organized as follows: Section 2 states the problem 
briefly and describes the procedure of joint optimization, assumptions 
and notations. Section 3 introduces the novel prediction approach, 
failure probability estimation and joint optimization model of replace-
ment and spare ordering. Section 4 presents a case study using simu-
lation bearing dataset and real dataset from PHM 2012 competition. 
Final conclusions are drawn in Section 5.

2. Procedure of joint optimization, assumptions and 
notations 

Condition monitoring provides an opportunity to enhance com-
ponent lifecycle management including component failure prediction, 
maintenance planning and spares inventory. Spares inventory can be 
declined and optimized via the implementation of condition-based 
maintenance with high accuracy of component failure prediction. 
Hence, accurate component failure prediction is the fundamental of 
condition-based maintenance and spare inventory ordering/control. 
Among the existing work, failure prediction for components using 
population-based failure or suspension histories is researched a lot. 
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While, the prediction work is difficult when no failure or suspension 
histories of same type or similar components can be used as refer-
ence. Because the whole degradation processes cannot be reflected 
by historical data. Moreover, the parameters of the prediction models 
are hard to be estimated with the limited amount of data to date. In 
this case, we introduced a novel method to predict an individual criti-
cal component degradation and RUL, then a new failure probability 
function is formulated and connected “service time” with “degrada-
tion extent”. Based on the failure probability, the joint optimization 
of replacement and spare ordering is developed. The procedure of 
the proposed condition-based joint optimization of replacement and 
spares ordering is described in Fig. 1. 

In the first phase, condition monitoring is conducted on an in-
dividual component. Condition monitoring signal is collected. Ad-
vanced feature extraction method is used to extract features which 
reflect degradation of the component and are prepared for training 
ANN. Some initial parameters are set before ANN training, such as, 
maximum training epoch, performance goal, initial time window, etc. 
Then the initial time windows are shrunken and the remained features 
in the shrunken time windows are used to train ANN.   

In the second phase, the well trained ANN is used to perform 
lopfng-step ahead rolling prediction. After each prediction epoch, 
the predicted results are post-processed and compared with predeter-
mined failure threshold, then the predicted RUL is outputted along 
with degradation.[27] According to the component “service time” and 
“degradation extent”, failure probability is estimated.

In the third phase, the cost parameters are initialized, such as pre-
ventive replacement cost, failure replacement cost, inventory holding 
cost, spare shortage cost, and spare ordering cost. The failure prob-
ability function is used to estimate the expected costs. Finally, the best 
policy of replacement and spare ordering can be determined based on 
the minimizing long-run expected cost per unit time. According to 
the optimal policy, the availability of spare part is checked out, if the 
spare part is available, condition-based replacement is performed at 
the right time, alternatively, a spare ordering should be placed at the 
optimized ordering time.

In this paper, some basic assumptions and notations are listed as 
follows.

A1: During the condition monitoring process, sampling is periodic 
with equivalent sampling frequency. 

A2: In general, the degradation signal shows an increasing tendency.
A3: No lead time for carrying out a preventive replacement or failure 

replacement, namely, replacement is performed immediately.
A4: Leading time of spare part is fixed elapsed from the moment of 

placing an order until order receipt.
A5: Inspection cost is not considered in this paper. We assumed the 

inspection cost can be neglected compared with other costs.

Notation Description

f Fluctuation factor

ST Start time of prediction

ws0 Initial time window size

Wk1, Wk2 Feature matrixes in the shrunken windows

wsk Shrunken time window size

mk1, mk2 Mean values of Wk1 and Wk2

rk Final increasing rate

inputn,  
hidden,  
outputn

Numbers of neurons in input layer, hidden layer and 
output layer

σ A constant in interval (1,10)

Fp Predicted features matrix

F Features matrix of the whole life

fth Failure threshold

FN Normalized feature matrix

cumsum Accumulated summation

FNC Cumulative feature matrix

FP Cumulative failure probability

FPt Cumulative failure probability at time t

Cpr Preventive replacement cost

Cfr Failure replacement cost

Co Ordering cost

Ch Holding cost per unit time

Cs Shortage cost per unit time

ce System expected cost per unit time

SC Expected shortage cost

HC Expected holding cost

Ce Total excepted cost

to Spare part ordering time

tr Replacement time

L Spare part transit time

T Failure time

Te Expected time until replacement

3. Problem formulation

3.1. Degradation and RUL prediction for an individual com-
ponent 

The introduced individual component degradation and RUL 
prediction is proposed by Xiao et al. [27]. The method uses limited 

Fig. 1. Procedure of the proposed joint optimization of replacement and 
spares ordering
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amount of recorded condition monitoring data to date. According to 
the proposed prediction approach, the procedure of their method is 
summarized in Fig. 2 as follows.

The extracted features from condition monitoring data to date are 
prepared for training BPNN. Before training BPNN, an initial time 
window size (ws0) is given, mean values of the features in the initial 
time windows are calculated. The ratio of two mean values in two 
adjacent time windows is defined as increasing rate. Then increasing 
rate is compared with fluctuation factor which is set in the interval of 
(0, 0.1). If the increasing rate is greater than (1+f), features in the cur-
rent time windows are used to train BPNN, otherwise, the time win-
dows are shrunken step by step, then increasing rate is recalculated 
according to the features in the shrunken time windows. Shrinking is 
terminated until the increasing rate is greater than (1+f). Fig. 3 shows 
the comparison of time windows before and after the shrunken. The 
feature matrixes in the shrunken time windows, mean values and in-
creasing rate are calculated by Eq. (1)-Eq. (3). 
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Where, ST is the start time of prediction, ws0 is initial time window 
size, Wk1 and Wk2 are feature matrixes in the kth shrunken windows 
respectively, wsk is the shrunken time window size. Mean values of 

Wk1 and Wk2 are mk1 and mk2 respectively, and rk is the final increas-
ing rate.

Features matrixes Wk1 and Wk2 in the final shrunken time win-
dows are regarded as inputs and outputs for training BPNN respec-
tively. The number of neurons in input layer and output layer depends 
on the features matrix dimension. The revised empirical formula for 
determining the number of neurons for hidden layer is as follows:

 hidden inputn outputn= +



 +σ  (4)

Where hidden, inputn and outputn are the numbers of neurons in hid-
den layer, input layer and output layer, respectively. σ is a constant in 
interval (1, 10). 

After determining the training samples and BPNN construction, 
BPNN is trained. Multi-step ahead rolling prediction is performed. In 
each prediction epoch, there are wsk tuples of feature predicted, the 
rolling prediction is performed as Eq. (5). The outputs in each predic-
tion epoch should be post-processed using Eq. (6) and Eq. (7):
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3.2. Novel component failure probability estimation method

Component failure probability is the basis when balancing the 
joint optimization of replacement and spare ordering. Since no failure 
or suspension histories of same type or similar components can be 
used as population-based reference, a new failure probability estima-
tion function is proposed using the predicted features based on “serv-
ice time” and “degradation extent”. The “degradation extent” of the 
features can be formulated as Eq. (8):

 1 2[ ; ; ; ; ]ST p

th thf f
= =

F F F FFFN


  (8)

Where, F is features matrix of the whole life. Fp is predicted fea-
ture matrix. fth is failure threshold. FN is normalized feature matrix. 

Eq. (8) describes the relationship between features at current time 
and predetermined failure threshold. If a feature is closed to failure 
threshold, the failure probability is higher. In terms of “service time”, 
it is based on a widely accepted assumption which is that the failure 
probability is higher if a component serves for longer time. Hence, the 
failure probability is formulated as follows:

 ( )cumsum=FNC FN   (9)

Fig. 3. Comparison of time window before and after shrunken

Fig. 2. Procedure of the proposed degradation and RUL prediction approach 
from Xiao et al.[27].
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( )sum

=
FNCFP

FN
  (10)

Where, cumsum represents accumulated summation. FNC is cu-
mulative feature matrix. FP is cumulative failure probability which is 
a monotonic increasing function in interval of (0, 1]. A component is 
subject to random failure with the failure probability FPt at time t.

3.3. Joint optimization of condition-based replacement and 
spare ordering

In this paper, the objective is to determine the optimal replace-
ment and spare part ordering time along with the component being 
monitored. Two replacement policies are considered. One is preven-
tive replacement which refers to performing replacement before the 
component failed. The other is failure replacement which refers to 
performing replacement after the component failed. The two replace-
ment policies generate different maintenance costs which are Cpr and 
Cfr, respectively. In general, failure replacement can cause higher cost 
than preventive replacement, that is Cfr>Cpr. Before performing re-
placement, the availability of spares in stock should be checked out. 
If there are available spare parts before the required time, inventory 
holding cost is incurred with the cost per unit time Ch, alternatively, 
shortage cost with cost per unit time Cs is generated if the spare part 
is unavailable. If a spare part is needed while unavailable, an order is 
placed with ordering cost Co.

Considering all the possible scenarios, the relationship among 
spare part ordering, replacement and component failure is shown in 
Fig.4. Where, to is spare part ordering time, tr is replacement time, 
L is leading time of spare part. T is failure time of the component. 
Theoretically, it is possible for a component to be replaced at any time 
since ST until its failure. If a spare ordering is placed, a new spare 
can be available after a fixed leading time L. During the period, the 
system has to suffer a potential shortage of spare part with a shortage 
cost which is formulated as Eq. (11). However, if the spare is arrived 
before the required time, the system has to suffer the inventory hold-
ing cost which is as Eq. (12). 
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Where, SC and HC are the expected shortage cost and the ex-
pected holding cost, respectively. t is integration time step.

Therefore, the total excepted cost Ce is as Eq. (13). The expected 
long-run time until replacement is denoted as Te can be deduced as 
Eq. (14). The expected long-run total cost rate, ce, can be calculated 
by Eq. (15):

  (1 )e o pr t fr tC C SH HC C FP C FP= + + + × − + ×   (13)
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The objective of this paper is to determine the best replacement 
time and spare ordering time by minimizing the expected long-run 
total cost per unit time. It can be formulated as follows:

 
min (t)

. .
1

e

t

c
s t ST t T

FP
≤ ≤
≤

  (16)

4. Case study

In this section, we validate the proposed model using two bearing 
datasets, one is simulated degradation dataset, and the other is a real-
world condition monitoring dataset from PHM 2012 competition.

4.1. Simulated bearing dataset

The run-to-failure (RTF) simulation experiment is based on the 
work of McFadden and Smith [11] and Wang and Kootsookos [21], 
the more details can be found in Ref [28]. The simulated signal is 
extracted by wavelet packet analysis. The wavelet base is “db4”, de-
composition level is three. Energy of wavelet packet coefficients is 
the feature vector. The first dimension of the features is selected as 
the key element, if the feature at a time point in the first dimension 
exceeds 1400 Hz, the simulated bearing is regarded as failed. The 
degradation path of the key element of the simulated bearing is shown 
as Fig. 5. 

Since 1400 Hz is set as failure threshold, the lifetime of simulated 
bearing is 1502 time units, here the time unit is hour. Due to feature 
extraction method, there are eight dimensions in the feature matrixes. 
Accordingly, there are eight neurons in input layer and output layer 
in BPNN, respectively. There is one hidden layer with ten neurons. 
The maximal iteration epoch for BPNN training is 1000, error goal is 
1e-10. The initial time window size is 100, fluctuation factor is 0.02. 

Fig. 5. Degradation path of the key element of the simulated bearing

Fig. 4. The relationship among spare part ordering, replacement and compo-
nent failure
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The predicted degradation and RULs at three different time points are 
illustrated in Fig. 6 and Table 1. Predicted RULs since ST=200 time 
units are shown in Fig. 7 compared with real values. 

Taking ST=500 as an example, the comparison of predicted degra-
dation and real values is descripted in Fig. 8, the corresponding failure 
probability and reliability change over time are shown in Fig. 9. 

The following hypothetical data is used 
when optimizing replacement and spare or-
dering jointly, L=4 time units, Cpr=$200, 
Cfr=$1000, Ch=$1/unit time, Cs=$500/unit 
time, Co=$300. Using the above proposed 
method, the optimal spare ordering time is 
at 891 hours, the replacement time is at 900 
hours, the long-run expected cost rate is 
0.0066, and the expected total cost is $1945, 
accordingly. The expected cost rate change 
over the predicted lifecycle is illustrated in 
Fig. 10. 

4.2. PHM Competition bearing dataset

PHM Competition bearing data is from IEEE Challenge 2012, 
it is real-field experimental data. Inspection was performed very 10 
seconds and lasted for 0.1 second. Sampling frequency of vibration 
signal was 25.6 KHz, more detailed data information can be obtained 
from the website [4]. Shock Pulse Method (SPM) is used to extract 
degradation feature. The first bearing among PHM-2012 Competition 

bearings is used to validate the proposed method. The maximum nor-
malized shock (MNS) value of Bearing 1 is depicted in Fig. 11. 

Fig. 9. Failure probability and reliability change over time

Fig. 11. MNS values of Bearing 1 from PHM-2012 Competition

Fig. 10. Expected cost rate change over the predicted lifecycle

Fig. 6. Comparison of predicted and real degradation at different time points

Fig. 7. Predicted RULs since ST=200

Fig. 8. Comparison of predicted degradation and real degradation at ST=500

Table 1. Comparison of predicted and real RULs at different time points

ST Real RUL Predicted RUL Predicted error 
(%)

350 1152 1207 -3.66

700 802 758 2.93

1050 452 388 4.26
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From Fig. 11, MNS increases after 1000×10s, therefore, features 
before 1000×10s are not considered when training ANN and predict-
ing RUL. The failure threshold of Bearing 1 is set 20dB. Hence, the 
bearing lifetime is 1765×10s. The essential parameters for degrada-
tion prediction and cost rate estimation are listed as followed. The 
number of neurons in input layer and output layer is one, there is one 
hidden layer with six neurons. The initial time window is 150, fluc-
tuation factor is 0.05. The predicted degradation and RULs at three 

different time points are illustrated in Fig. 12 and the prediction per-
formance is listed in Table 2. RUL prediction results since ST=1300 
time units compared with real RULs are shown in Fig. 13. 

Taking ST=1300 as an example, the esti-
mated failure probability and reliability change 
over time is shown in Fig. 14. The hypotheti-
cal cost parameters are as followed, L=5 time 
units, Cpr=$250, Cfr=$1000, Ch=$1/unit time, 
Cs=$1200/unit time, Co=$500. The optimal 
spare ordering time is at 1894 time units, the 
best replacement time is at 1911 time units, the 
long-run expected cost rate is 0.0068, and the 
expected total cost is $8512.9. The expected 
cost rate change over the predicted lifecycle is 
shown in Fig. 15. 

4.3. Comparative parameters tuning and discussion

For comparison, the method from Elwany & Gebraeel [2] is used 
to calculate the best replacement time and spare ordering time. For the 
simulated bearing, the optimal replacement time is at 1049 time units, 
the optimal spare ordering time is at 1037 time units along with the 
expected long-run cost rate is 0.0068. The total cost is $ 2653.7. For 
the PHM-2012 competition bearing data, the best replacement time is 
2189 time units, the best spare ordering time is 2164 time units, and 
the corresponding long-run cost rate is 0.0071.

(1) Comparison of cost rate and replacement time
In Elwany & Gebraeel [2] work, the best replacement time is de-

termined according to the long-run average cost rate which is defined 
as followed:

 
( ) ( )

( )0

p r f r
r tr

c F t c F t
C

F t dt

+
=

∫
  (17)

Where, Cr is the expected long-run replacement cost, cp is the 
planned replacement cost, cf is the failure replacement cost. F(t) 
is the cumulative density function of component’s failure time. 
( ) ( )1-F t F t= .

For more comparison, different inventory holding costs and short-
age costs are tuned for comparative discussion. For the simulated 
bearing, inventory holding cost is varied from $0.2/unit time to $1/
unit time, the interval is $0.2/unit time, at the same time, shortage cost 
varies from $50/unit time to $250/unit time with the interval of $50/
unit time. For PHM 2012 Competition bearing, the inventory holding 
cost is changed from $0.2/unit time to $2/unit time with the interval of 
$0.2/unit time, the shortage cost varies from $50/unit time to $1200/
unit time with the interval of $50/unit time. Comparing our proposed 
joint optimization method in this paper with the method in Elwany & 
Gebraeel [2], the respective cost rates and best replacement times are 
shown in Fig. 16 and Fig. 17.

Fig. 15. Expected cost rate change over the predicted lifecycle

Fig. 14. Failure probability and reliability change over time

Fig. 13. RUL prediction results since ST=1300

Fig. 12. Comparison of predicted and real degradation at different time points

Table 2. Comparison of predicted and real remaining useful life at differ-
ent time points

ST Real RUL Predicted RUL Predicted error 
(%)

1300 1465 1443 1.25

1700 1065 817 14.5

2100 665 1119 -25.72
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From Fig. 16, the comparison of cost rates, the cost rates from our 
proposed method are less than the ones from Elwany & Gebraeel’s 
work [2]. Move to Fig. 17, the replacement time from Elwany & Ge-
braeel’s work [2] is a constant. The replacement time from Elwany & 
Gebraeel’s work [2] does not vary along with the spare holding cost 
and shortage cost. From Eq. (17), the replacement time is just impact-
ed on the balance of planned replacement cost and failure replacement 
cost. After determining the best replacement time, the spare ordering 
time is calculated accordingly. Thus is different from our proposed 
method. In our proposed method, inventory holding cost and shortage 
cost can impact on the replacement time. 

(2) Comparison of inventory time
Eq. (18) is defined to compare the inventory time for the two dif-

ferent methods. Where tr* and to* are the optimal replacement time and 
spare ordering time from our proposed method, tr* and to* are the op-

timal replacement time and spare ordering time 
from Elwany & Gebraeel’s work:

 
* *

* *

r o

r o

x t t L
y t t L
= − −

= − −
                       (18)

Therefore, x is the inventory time for our 
proposed method, y is the inventory time for the 
method from [2]. Accordingly, the difference of 
x and y is the inventory time comparison. For 
the all sample data (which is same for the com-
parison of cost rates and replacement times. i.e., 
for PHM 2012 Competition bearing data, the in-
ventory holding cost is changed from $0.2/unit 
time to $2/unit time with the interval of $0.2/
unit time, the shortage cost varies from $50/unit 
time to $1200/unit time with the interval of $50/
unit time.), the inventory time comparison is 
shown in Fig. 18. 

From Fig. 18, in Elwany & Gebraeel’s meth-
od [2], the inventory time is generally greater 
than our proposed method. In other words, their 
method scarifies inventory time to guarantee the 
component long service with higher cost rate. 

Overall, their method can be regarded as 
two phases. The first phase is to determine the 
replacement which just concerns failure replace-
ment cost and preventive replacement cost. The 
second phase is to determine the best spare order 
placing time according to the best replacement 
time. Their method may be less effective when 
inventory turnover ratio, inventory time and in-
ventory quantity are critical concerns. While, in 

our proposed method, the replacement time and spare ordering are 
optimized jointly with lower cost rates. 

5. Conclusions and prospects 

This work focuses on the optimization of replacement and spare 
ordering for one individual critical rotary component. For the com-
ponent, there are no failure or suspension histories of same type or 
similar components as references when predicting its failure time 
and degradation. To solve the prediction problem, a novel approach 
is introduced. Then a new failure probability estimation function is 
developed based on “service time” and “degradation extent”. The dif-
ference between the developed method and the existing method, the 
failure probability is more focused on individual property, rather than 
the population-based character. Replacement and spare ordering time 
are determined simultaneously according to minimizing the expected 
long-run cost rate which is related to planned replacement cost, failure 
replacement cost, inventory holding cost, shortage cost and spare or-
dering cost. A simulated degradation bearing dataset and a real-world 
condition monitoring bearing dataset from PHM Competition 2012 
are used to validate the proposed method. The degradation and RUL 
prediction performance is illustrated by comparing with the real val-
ues. The proposed approach is discussed by tuning the parameters of 
inventory holding cost and shortage cost. The results show that our 
method has lower long-run cost rate and less inventory time. It can be 
more effective when the inventory time, inventory turnover ratio and 
inventory quantity are critical concerns.

This proposed method can benefit to determining optimal replace-
ment and spare ordering time for single component. Future research 
will focus on multi-component system optimization of replacement 
and spare ordering time with variable leading time. Fig. 18 Comparison of (x-y) with different inventory holding costs and short-

age costs for PHM 2012 Competition bearing

Fig. 17. Comparison of replacement times with different inventory holding and shortage costs

Fig. 16. Comparison of cost rates with different inventory holding costs and shortage costs
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