PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of Acetaminophen and Methylparaben Removal within Subsurface Batch Constructed Wetland Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The response surface methodology accompanied by Central Composite Design (CCD) was employed in this study to optimize the Alternanthera spp-based phytoremediation process for the individual removal of acetaminophen and methylparaben. Two operational variables, including concentration (A) (20, 60,100 mg/L) and sampling time (B) (7, 14, 21, and 35 days) were involved in the study for removal efficiency (Y) as response. CCD had required a total of 18 experiments for each compound. Analysis of variance (ANOVA) was conducted to verify the adequacy of the proposed mathematical models and revealed good agreement with the experimental data. The observed R2 values (0.9732 and 0.9870), adjusted R2 (0.9620 and 0.9816) and predicted R2 (0.9383 and 0.9721) for AC and MP, respectively, indicated that the developed models were significant at the 95% probability level. Concentration factor was found to be insignificant in the mathematical models; in contrast, sampling time was found to be of a crucial role. The removal of AC and MP were 89.23% and 64.48% under optimum conditions of A = 100 mg/L and B = 35 days respectively. The validation test confirmed the predicted results obtained by Central Composite Design, as the removals achieved under optimum conditions were 91.04% and 59.17% for AC and MP, respectively, which were in good agreement with the results proposed by the theoretical design.
Rocznik
Strony
228--239
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Architecture Engineering, College of Engineering, Wasit University, Wasit, Iraq
  • Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Biochemical Engineering, Al-khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Al-Baldawi I.A.W., Abdullah S.R.S., Hasan H.A., Suja F., Anuar N., Mushrifah I. 2014. Optimized conditions for phytoremediation of diesel by Scirpus grossus in horizontal subsurface flow constructed wetlands (HSFCWs) using response surface methodology. J. Environ. Manage., 140, 152–159. http://dx.doi.org/10.1016/j.jenvman.2014.03.007
  • 2. Archer E., Petrie B., Kasprzyk-Hordern B., Wolfaardt G.M., 2017. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere, 174, 437–446. https://doi.org/10.1016/j.chemosphere.2017.01.101
  • 3. Bajpai M., Singh Katoch S., Singh M. 2020. Optimization and economical study of electrocoagulation unit using CCD to treat real graywater and its reuse potential. Environ. Sci. Pollut. Res., 27, 42040–42050. https://doi.org/10.1007/s11356–020–10171-x
  • 4. Bayuo J., Abukari M.A., Pelig-Ba K.B. 2020 Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media. Appl. Water Sci 10, 135. https://doi.org/10.1007/s13201–020–01213–3
  • 5. Couto C.F., Santos A.V., Amaral M.C.S., Lange L.C., de Andrade L.H., Foureaux A.F.S., Fernandes B.S. 2020. Assessing potential of nanofiltration, reverse osmosis and membrane distillation drinking water treatment for pharmaceutically active compounds (PhACs) removal. J. Water Process Eng. 33, 101029. https://doi.org/10.1016/j.jwpe.2019.101029
  • 6. Darajeh N., Idris A., Masoumi H.R.F., Nourani A., Truong P., Sairi N.A. 2016. Modeling BOD and COD removal from Palm Oil Mill Secondary Effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. J. Environ. Manage. 181, 343–352. http://dx.doi.org/10.1016/j.jenvman.2016.06.060
  • 7. Ewadh H.M., Abdullah S.R.S., Hasan H.A., Anwar N. 2019. Optimized conditions for pharmaceuticals and personal care products removal by ozonation using response surface methodology. Int. J. Pharm. Qual. Assur. 10, 90–99. https://doi.org/10.25258/ijpqa.10.1.15
  • 8. Gaffney V.J., Almeida C.M.M., Rodrigues Al., Ferreira E., Benoliel M.J., Cardoso V.V. 2015. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res. 72, 199–208. https://doi.org/10.1016/j.watres.2014.10.027
  • 9. Hamad M.T.M.H. 2020. Comparative study on the performance of Typha latifolia and Cyperus Papyrus on the removal of heavy metals and enteric bacteria from wastewater by surface constructed wetlands. Chemosphere 260, 127551. https://doi.org/10.1016/j.chemosphere.2020.127551
  • 10. Hijosa-Valsero M., Matamoros V., Martín-Villacorta J., Bécares E., Bayona J.M. 2010. Assessment of Full-Scale Natural Systems for the Removal of PPCPs from Wastewater in Small Communities. Water Res. 44, 1429–39. https://doi.org/10.1016/j.watres.2009.10.032
  • 11. Hijosa-Valsero M., Reyes-Contreras C., Domínguez C., Becares E., Bayona J.M. 2016. Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots. Chemosphere, 145, 508–517.
  • 12. Junaid M., Wang Y., Hamid N., Deng S., Li W.G., Pei D.S. 2019. Prioritizing selected PPCPs on the basis of environmental and toxicogenetic concerns: A toxicity estimation to confirmation approach. J. Hazard. Mater. 380, 120828. https://doi.org/10.1016/j.jhazmat.2019.120828
  • 13. Khan A., Do J., Kim D. 2016. Experimental optimization of high strength self-compacting concrete based on D-Optimal design. J. Constr. Eng. Manage. 143, 04016108. http://10.1061/(ASCE)CO.1943–7862.0001230
  • 14. Kumari M., Gupta S. 2019. Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP)- An endeavor to diminish probable cancer risk. Sci. Rep. 9,18339. https://doi.org/10.1038/s41598–019–54902–8
  • 15. Lam K.Y., Lieu S.N., Benoit P., Passeport E. 2020. Optimizing Constructed Wetlands for Safe Removal of Triclosan: A Box−Behnken Approach. Environ. Sci. Technol., 54, 225−234. http://10.1021/acs.est.9b05325
  • 16. Liu M., Yin H., Wu Q. 2019. Occurrence and Health Risk Assessment of Pharmaceutical and Personal Care Products (PPCPs) in Tap Water of Shanghai. Ecotoxicol. Environ. Saf., 183, 109497. https://doi.org/10.1016/j.ecoenv.2019.109497
  • 17. Mojiri A., Tajuddin R.M., Ahmad Z., Ziyang L., Aziz H.A., Amin N.M. 2017. Chromium(VI) and cadmium removal from aqueous solutions using the BAZLSC/cockle shell constructed wetland system: optimization with RSM. Int. J. Environ. Sci. Technol., 15, 1949–1956. http://10.1007/s13762–017–1561–2
  • 18. Ntakiyiruta P., Briton B.G.H., Nsavyimana G., Adouby K., Nahimana D., Ntakimazi G., Reinert L. 2020. Optimization of the phytoremediation conditions of wastewater in post-treatment by Eichhornia crassipes and Pistia stratiotes: kinetic model for pollutants removal. Environ. Technol., 1–14. https://doi.org/10.1080/09593330.2020.1852445
  • 19. Ozturk D., Dagdas E., Fil B.A., Bashir M.J.K. 2021. Central composite modeling for electrochemical degradation of paint manufacturing plant wastewater: One-step/two-response optimization. Environ. Technol. Innov., 21, 101264. https://doi.org/10.1016/j.eti.2020.101264
  • 20. Petrie B., Youdan J., Barden R., Kasprzyk-Hordern B. 2016. New Framework To Diagnose the Direct Disposal of Prescribed Drugs in Wastewater − A Case Study of the Antidepressant Fluoxetine. Environ. Sci. Technol., 50, 3781–3789. https://doi.org/10.1021/acs.est.6b00291
  • 21. Piovesan J., Santana E., Spinelli A. 2018. Reduced graphene oxide/gold nanoparticles nanocompositemodified glassy carbon electrode for determination of endocrine disruptor methylparaben. J. electroanal. chem., 813, 163–170. https://doi.org/10.1016/j.jelechem.2018.02.025
  • 22. Sanusi S.N.A., Halmi M.I.E., Abdullah S.R.S., Hassan H.A., Hamzah F.M., Idris M. 2016. Comparative process optimization of pilot-scale total petroleumhydrocarbon (TPH) degradation by Paspalum scrobiculatum L. Hackusing response surface methodology (RSM) and artificial neuralnetworks (ANNs). Ecol. Eng. 97, 524–534. http://dx.doi.org/10.1016/j.ecoleng.2016.10.044
  • 23. Teiri H., Hajizadeh Y., Samaei M.R., Pourzamani H., Mohammadi F. 2020. Modelling the phytoremediation of formaldehyde from indoor air by Chamaedorea Elegans using artificial intelligence, genetic algorithm and response surface methodology. J. Environ. Chem. Eng., 8, 103985. https://doi.org/10.1016/j.jece.2020.103985
  • 24. Thani N.S.M., Ghazi R.M., Abdul Wahab I.R., Amin M.F.M., Hamzah Z., Yuso N.R.N. 2020. Optimization of Phytoremediation of Nickel by Alocasia puber Using Response Surface Methodology. Water 12, 2707. http://doi:10.3390/w12102707
  • 25. Ting W.H.T., Tan I.A.W., Salleh S.F., Abdul Wahab N. 2020. Ammoniacal nitrogen removal by Eichhornia crassipes-based phytoremediation: process optimization using response surface methodology. Appl. Water Sci. 10, 80. https://doi.org/10.1007/s13201–020–1163-x
  • 26. Titah H.S., Halmi M.I.E.B., Abdullah S.R.S., Hasan H.A., Idris M., Anuar N. 2018. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN). Int. J. Phytoremediation, 20, 721–729. https://doi.org/10.1080/15226514.2017.1413337.
  • 27. United States Pharmacopeia and National Formulary (USP 29 NF 24). 2006. Rockville, MD: United States Pharmacopeia Convention, 2, 3711.
  • 28. Vymazal J., Dvořáková Březinová T., Koželuh M., Kule L. 2017. Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic – the first year of monitoring. Ecol. Eng., 98, 354–364. https://doi.org/10.1016/j.ecoleng.2016.08.010
  • 29. Wang S., Yu J., Guo F., Pan G., Zhang L., Hu H., Lu Y., Dao G. 2020. Optimization of Combined Submerged Macrophyte Planting Conditions for Inhibiting Algae by Response Surface Methodology. Water 12, 2093. https://doi.org/10.3390/w12082093
  • 30. Weerakoon G.M.P.R., Jinadasa K.B.S.N., Manatunge J., Wijesiri B., Goonetilleke A. 2020. Kinetic modelling and performance evaluation of vertical subsurface flow constructed wetlands in tropics. J. Water Process. Eng. 38, 101539. https://doi.org/10.1016/j.jwpe.2020.101539
  • 31. Williams M., Kookana R.S., Mehta A., Yadav S.K., Tailor B.L., Maheshwari B. 2019. Emerging contaminants in a river receiving untreated wastewater from an Indian urban centre. Sci. Total Environ. 647, 1256–1265. https://doi.org/10.1016/j.scitotenv.2018.08.084.
  • 32. Xu M., Huang H., Li N., Li F., Wang D., Luo Q. 2019. Occurrence and Ecological Risk of Pharmaceuticals and Personal Care Products (PPCPs) and Pesticides in Typical Surface Watersheds, China. Ecotoxicol. Environ. Saf., 175, 289–298. https://doi.org/10.1016/j.ecoenv.2019.01.131.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-354b3bc1-5970-46ee-b1e9-422a4a1c087d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.