PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Methods of assessing concrete creep in prestressed bridge structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metody oceny pełzania betonu w mostowych konstrukcjach sprężonych
Języki publikacji
EN
Abstrakty
EN
The paper discusses the phenomenon of concrete creep, its mechanical models and simplified as well as more sophisticated methods of estimating creep effects applied in the design of bridge structures. The section on simplified methods describes the metod of substitutive concrete elasticity modulus and the method of estimating creep effects with the correction factor Ccreep for spans with precast beams. Among the precise methods, it presents the modified effective modulus method (Trost 1967), age-adjusted effective modulus method (Bažant 1972) and the general incremental method according to the linear theory of elasticity. Methods for computationally accounting for creep according to current PN-EN standards, withdrawn Polish standards, and recommendations from foreign literature are characterized. The impact of creep on the redistribution of internal forces during the incremental erection of the structure was demonstrated using examples of a viaduct made of precast beams and a bridge constructed using balanced cantilever method. Attention was drawn to the possibilities of extending the description of creep phenomena in concrete bridge structures using the conceptual framework of fractional-order derivatives.
PL
W referacie omówiono zjawisko pełzania betonu, jego modele mechaniczne oraz uproszczone i bardziej wyrafinowane sposoby szacowania efektów pełzania stosowane w projektowaniu konstrukcji mostowych. W części dotyczącej metod uproszczonych opisano metodę – efektywnego modułu sprężystości oraz metody współczynnika korekcyjnego Ccreep stosowane w przypadku przęseł z belek prefabrykowanych. Spośród dokładnych metod przedstawiono m.in. metodę zmodyfikowanego efektywnego modułu sprężystości (Trost 1967), metodę efektywnego modułu sprężystości betonu dostosowanego do wieku jego obciążenia (Bažant 1972) oraz metodę przyrostową według liniowej teorii sprężystości. Scharakteryzowano metody obliczeniowego ujęcia pełzania według aktualnych przepisów PN-EN, wycofanych norm polskich oraz w zaleceniach i literaturze zagranicznej. Zaprezentowano wpływ pełzania na redystrybucję sił wewnętrznych przy etapowym wznoszeniu ustroju na przykładzie wiaduktu z belek prefabrykowanych i mostu budowanego metodą betonowania nawisowego. Zwrócono uwagę na możliwości rozszerzenia opisu zagadnień pełzania w betonowych konstrukcjach mostowych przy użyciu aparatu pojęciowego pochodnych ułamkowego rzędu.
Słowa kluczowe
Rocznik
Strony
369--384
Opis fizyczny
Bibliogr. 38 poz., il., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
  • [1] W. Radomski, “A few remarks on creep effects in prestressed concrete bridge structures”, presented at Scientific and Technical Conference Konstrukcje Sprężone KS2012, Krakow, 2012 (in Polish).
  • [2] E. Zgheib andW. Raphael, “Study of the admixtures effect on concrete creep using Bayesian Linear Regression”, Archives of Civil Engineering, vol. 65, no. 3, pp. 127-140, 2019, doi: 10.2478/ace-2019-0039.
  • [3] H. Liu, G. Duan, and J. Zhang, “Drying shrinkage and creep properties of self-compacting concrete with expansive agent and viscosity modified admixture”, Archives of Civil Engineering, vol. 68, no. 3, pp. 539-551, 2022, doi: 10.24425/ace.2022.141901.
  • [4] S. Kaufman, W. Olszak, and Cz. Eimer, Concrete construction, vol. 3: Prestressed structures. Warsaw: Arkady, 1965 (in Polish).
  • [5] L. Brunarski Fundamentals of the rheology of concrete structures. Warsaw: ITB, 2019 (in Polish).
  • [6] R. Oleszek and W. Nowak, “Simplified methods of assessing the impact of rheological effects on the nodes of bridge structures made of prefabricated beams”, Inżynieria i Budownictwo, vol. 72, no. 1, pp. 29-34, 016, (in Polish).
  • [7] Cz. Machelski, Calculation of bridges from precast concrete beams. Wrocław: DWE, 2006 (in Polish).
  • [8] J. Hołowaty, “Creep and shrinkage of concrete in bridge structures – the need to introduce Eurocodes”, presented at Seminar Wrocławskie Dni Mostowe 2013, Wrocław, 2013 (in Polish).
  • [9] S. Koch and C.L. Roberts, Design recommendations for the optimized continuity diaphragm for prestressed concrete bulb-T beams. Virginia: Transportation Research Council, 2008.
  • [10] PN-EN 1992-2:2010 Part 2: Bridges made of concrete. Calculation and construction rules.
  • [11] N.R. Hawson, Design of prestressed concrete bridges. Institution of Civil Engineers, 2008.
  • [12] R. Oleszek, “Rheological effects in bridge structures made of prestressed prefabricated beams”, Mosty, no. 2, pp. 24-30, 2015, (in Polish).
  • [13] R. Oleszek, “Evaluation of the methods of calculating the redistribution of internal forces in bridge structures made of prefabricated beams in the light of recommendations”, Drogownictwo, no. 12, pp. 396-404, 2015 (in Polish).
  • [14] R.J. Peterman and J.A. Ramirez, “Restraint moments in bridges with full-span prestressed concrete form panels”, PCI Journal, vol. 43, no. 1, pp. 54-73, 1998, doi: 10.15554/PCIJ.01011998.54.73.
  • [15] C.L. Freyermuth, “Design of Continuous Higway Bridges with Precast Prestressed Concrete Girders”, PCI Journal, vol. 14, no. 4, pp. 14-39, 1969, doi: 10.15554/pcij.04011969.14.39.
  • [16] A. Ghali, R. Favre, and M. Eldbadry, Concrete structures. Stresses and deformation, 3th ed. London: Spon Press, 2002.
  • [17] O. Buyukozturk, Mechanics and design of concrete structures. Cambridge: Massachusetts Institute of Technology, 2004.
  • [18] P. Gwoździewicz, “Modeling of rheological effects in prestressed concrete systems built in stages”, presented at Seminar Wrocławskie Dni Mostowe 2014, Wrocław, 2014 (in Polish).
  • [19] Q. Yu, Z. Bažant, and R. Wendner, “Improved Algorithm for Efficient and Realistic Creep Analysis of Large Creep-Sensitive Concrete Structures”, ACI Structural Journal, vol. 109, no. 5, pp. 665-676, 2012, doi: 10.14359/51684044.
  • [20] Z. Bažant, “Prediction of concrete creep and shrinkage: past, present and future”, Nuclear Engineering and Design, vol. 203, no. 1, pp. 27-38, 2001, doi: 10.1016/S0029-5493(00)00299-5.
  • [21] Z. Bažant, H. Hubler, and Q. Yu, “Damage in Prestressed Concrete Structures due to Creep and Shrinkage of Concrete”, in Handbook of Damage Mechanics. Springer, 2015, pp. 515-564, doi: 10.1007/978-1-4614-5589-9_49.
  • [22] fib Model Code 1990.
  • [23] fib Model Code 2010.
  • [24] ACI Committee 209: Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete, USA, 2008.
  • [25] C.R. Hendy and D.A. Smith, Designers’ guide to EN 1992-2. Eurocode 2: Design of concrete structures. Part 2: Concrete bridges. London: Thomas Telford Publishing, 2007.
  • [26] K. Dyduch, “Analysis of delayed prestressing losses in concrete structures”, presented at Scientific and Technical Conference Konstrukcje Sprężone KS2015, Krakow, 2015 (in Polish).
  • [27] J. Hołowaty, “Contemporary models of cement concrete creep”, in Conference Dni Betonu 2012 “Tradycja i nowoczesność”. Krakow, 2012, pp. 901-910 (in Polish).
  • [28] PN-EN 1992-1-1:2008+AC:2011 Part 1: General rules and rules for buildings.
  • [29] PN-S-10042:1991 Bridge structures. Concrete, reinforced concrete and prestressed structures. Designing.
  • [30] J. Camare and A. Hipolito, “Precast Bridges – Design for Time Dependant Effects”, presented at The Second International fib Congres, Naples, 2006.
  • [31] A.H. Mattok, “Precast-Prestressed Concrete Bridges”, PCI Journal, no. 5, pp. 30-70, 1961. no.
  • [32] J. Biliszczuk, R. Eldebi, and Cz. Machelski, “A few remarks on the assessment of the impact of rheological factors on the strain of continuous bridge spans made of prefabricated beams”, presented at Problemy projektowania, budowy i utrzymania mostów małych, Szklarska Poręba, 1990 (in Polish).
  • [33] W. Nowak, “Principles of calculations of bridge span continuity by means of full reinforced concrete contact”, Drogownictwo, no. 7-8, pp. 132-138, 1991 (in Polish).
  • [34] A. Hameed, M. Saleem, A.U. Qazi, and J. Zhang, “Influence of girder age at continuity and construction sequence on the time dependent restraint moments in continuous prestressed concrete girder bridges”, Pakistan Journal of Science, no. 1, pp. 26-31, 2013.
  • [35] R. Oleszek, A. Barszczewska, P. Wojtaszek, and R. Kuśmierz, “About the design of a bridge built using the balanced cantilever method over the Bug River according to PN-EN standards”, presented at Seminar Wrocławskie Dni Mostowe 2022, Wrocław 2022 (in Polish).
  • [36] W. Grzesikiewicz and A. Zbiciak, “Application of fractional order derivative to modeling mineral-asphalt mixtures”, Pomiary Automatyka Kontrola, no. 9, pp. 1048-1051, 2011 (in Polish).
  • [37] R. Michalczyk and A. Zbiciak, Modeling of inelastic effects in asphalt surfaces. Constitutive description and numerical simulations. Oficyna Wydawnicza Politechniki Warszawskiej, 2022 (in Polish).
  • [38] I. Podlubny, Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35488668-beb7-4072-b8b2-1d3020db92b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.