Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let n ∈ N*, and N ≥ n be an integer. We study the spectrum of discrete linear 2n-th order eigenvalue problems [formula] where λ is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear 2n-th order problems by applying the variational methods and critical point theory.
Czasopismo
Rocznik
Tom
Strony
489--507
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Mohammed First University Department of Mathematics Oujda, Morocco
autor
- Mohammed First University Department of Mathematics Oujda, Morocco
Bibliografia
- [1] R.P. Agarwal, Difference Equations and Inequalities, Theory, Methods, and Applications, 2nd ed., Marcel Dekker, New York, 2000.
- [2] R.P. Agarwal, M. Bohner, P.J.Y. Wong, Sturm-Liouville eigenvalue problems on time scales, Appl. Math. Comput. 99 (1999), no. 2, 153-166.
- [3] C.D. Ahlbrandt, Dominant and recessive solutions of symmetric three term recurrences, J. Differential Equations 107 (1994), no. 2, 238-258.
- [4] V. Anuradha, C. Maya, R. Shivaji, Positive solutions for a class of nonlinear boundary value problems with Neumann—Robin boundary conditions, J. Math. Anal. Appl. 236 (1999), no. 1, 94-124.
- [5] D. Arcoya, Positive solutions for semilinear Dirichlet problems in an annulus, J. Differential Equations 94 (1991), no. 2, 217-227.
- [6] M. Cecchi, M. Marini, G. Villari, On the monotonicity property for a certain class of second order differential equations, J. Differential Equations 82 (1989), no. 1, 15-27.
- [7] P. Chen, X. Tang, New existence and multiplicity of solutions for some Dirichlet problems with impulsive effects, Math. Comput. Modelling 55 (2012), no. 3-4, 723-739.
- [8] J.R. Graef, L. Kong, M. Wang, Multiple solutions to a periodic boundary value problem for a nonlinear discrete fourth order equation, Adv. Dyn. Syst. Appl. 8 (2013), no. 2, 203-215.
- [9] C.J. Guo, D. O’Regan, Y.T. Xu, R.P. Agarwal, Existence of subharmonic solutions and homoclinic orbits for a class of even higher order differential equations, Appl. Anal. 90 (2011), no. 7, 1169-1183.
- [10] C.J. Guo, D. O’Regan, Y.T. Xu, R.P. Agarwal, Existence and multiplicity of homoclinic orbits of a second-order differential difference equation via variational methods, Appl. Math. Inform. Mech. 4 (2012), no. 1, 1-15.
- [11] J.K. Hale, J. Mawhin, Coincidence degree and periodic solutions of neutral equations, J. Differential Equations 15 (1974), 295-307.
- [12] W.G. Kelly, A.C. Peterson, Difference Equations: An Introduction with Applications, 2nd ed., Academic Press, New York, 2001.
- [13] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.
- [14] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. in Math., no. 65, Amer. Math. Soc., 1986.
- [15] H. Wang, On the existence of positive solutions for semilinear el liptic equations in the annulus, J. Differential Equations 109 (1994), no. 1, 1-7.
- [16] W. Zou, M. Schechter, Critical Point Theory and its Applications, Springer, New York, 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35414551-0922-4627-a528-4e7121d020db