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Abstract. Let n ∈ N∗, and N ≥ n be an integer. We study the spectrum of discrete linear
2n-th order eigenvalue problems

{∑n

k=0(−1)k∆2ku(t− k) = λu(t), t ∈ [1, N ]Z,
∆iu(−(n− 1)) = ∆iu(N − (n− 1)), i ∈ [0, 2n− 1]Z,

where λ is a parameter. As an application of this spectrum result, we show the existence of
a solution of discrete nonlinear 2n-th order problems by applying the variational methods
and critical point theory.
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1. INTRODUCTION

Let n ≥ 1 be a positive integer. We consider the following nonlinear 2n-th order
boundary value problems:

{∑n
k=0(−1)k∆2ku(t− k) = f(t, u(t)), t ∈ [1, N ]Z,

∆iu(−(n− 1)) = ∆iu(N − (n− 1)), i ∈ [0, 2n− 1]Z,
(1.1)

where N ≥ n is an integer, [1, N ]Z denotes the discrete interval {1, 2, . . . , N},
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∆ is the forward difference operator defined by

∆u(t) = u(t+ 1) − u(t),
∆0u(t) = u(t),
∆iu(t) = ∆i−1(∆u(t)) for i = 1, 2, 3, . . . , 2n

and f ∈ C([1, N ]Z × R,R).
As usual, a solution of (1.1) is a function u : [−(n − 1), N + n]Z −→ R which

satisfies both equations of (1.1).
Let us consider the spectrum of the linear boundary value problem corresponding

to the problem (1.1):
{∑n

k=0(−1)k∆2ku(t− k) = λu(t), t ∈ [1, N ]Z,
∆iu(−(n− 1)) = ∆iu(N − (n− 1)), i ∈ [0, 2n− 1]Z.

(1.2)

In [1], Agarwal studied the second-order linear eigenvalue problem
{

−∆2u(t− 1) = µu(t), t ∈ [1, N ]Z,
u(0) = u(N + 1) = 0.

(1.3)

He obtained µr = 4 sin2( rπ
2(N+1) ) for r ∈ [1, N ]Z, where µr is the eigenvalue of (1.3) and

ξr = (ξr(1), ξr(2), . . . , ξr(N))T is an eigenvector corresponding to the eigenvalue µr,
where ξr(j) = sin( rjπ

N+1 ) for j ∈ [1, N ]Z.
In [12], Kelly and Peterson studied the following eigenvalue problems:
{

∆(p(t− 1)∆u(t− 1)) + q(t)u(t) + µm(t)u(t) = 0, t ∈ [1, N ]Z,
u(0) = u(N + 1) = 0,

(1.4)

where p,m ∈ C([1, N ]Z, ]0,∞[) and q ∈ C([1, N ]Z,R). They proved that the prob-
lem (1.4) has exactly N real and simple eigenvalues µt, t ∈ [1, N ]Z satisfying
µ1 < µ2 < . . . < µN and the eigenfunction corresponding to µt has exactly t−1 simple
generalized zeros.

Moreover, when m(t) = 1, Agarwal et al. [2] generalized the results of the problem
(1.4) to the dynamic equations on time scales with Sturm–Liouville boundary condition.

It is well known that in different fields of research, such as computer science,
economics, neural networks, biological systems, population dynamics, mechanical
engineering, the mathematical modeling of important questions leads naturally to
the consideration of nonlinear difference equations. As a result, in recent years,
many existence results of nontrivial solutions for differential equations have been
obtained due to the relatively fast development of studying the boundary value
problems for differential equations, where various methods and techniques have been
used, for example, fixed point theorems methods, coincidence degree theory, topological
degree theory, we refer to [3–6, 11, 15]. Critical point theory as well as variational
methods are powerful tools to investigate the existence of solutions of various problems
on differential equations [7–10,13,14,16].
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In this paper, we study the spectrum of the problem (1.2), via matrix theory. And
at last, as an application of this spectrum result, we show the existence of a solution
of discrete nonlinear 2n-th order problems (1.1) by variational methods and critical
point theory. The main results in this paper are the following theorems:

Theorem 1.1. If N ⩾ 2n+ 1, then the problem (1.2) has exactly N real eigenvalues
λj, j ∈ [0, N − 1]Z, which satisfies

{
λj = a0 + 2

∑n
l=1 al cos( 2πlj

N ), j ∈ [0, N − 1]Z,
λj = λN−j , j ∈ [1, N − 1]Z,

with al = (−1)l
∑n

j=l C
j+l
2j for any l ∈ [0, n]Z. Moreover, the eigenspace E(λj) corre-

sponding to λj, j ∈ [0, N − 1]Z, is given as follows:
{
E(λ0) = span(ϕ0),
E(λj) = span(ϕj , ψj), j ∈ [1, N − 1]Z,

where

ϕj = (ϕj(0), ϕj(1), ϕj(2), . . . , ϕj(N − 1))T ,

ψj = (ψj(0), ψj(1), ψj(2), . . . , ψj(N − 1))T

for j ∈ [0, N − 1]Z with ϕj(r) = cos( 2πrj
N ) and ψj(r) = sin( 2πrj

N ) for r ∈ [0, N − 1]Z.

Theorem 1.2. Assume that there exist α, β ∈ ]0,∞[ and l ∈ [0, N − 2]Z such that

λls
2 < αs2 ≤ f(t, s)s ≤ βs2 < λl+1s

2 for |s| ≥ r > 0 and t ∈ [1, N ]Z. (1.5)

Then the problem (1.1) has at least one solution.

The paper is arranged as follows. Section 2 contains some preliminary lemmas.
The main results are proved in Sections 3 and 4.

2. PRELIMINARY LEMMAS

In the present paper, we define a vector space EN by

EN = {u : [−(n− 1), N + n]Z −→ R | ∆iu(−(n− 1)) = ∆iu(N − (n− 1)),
i = 0, 1, 2, 3, . . . , 2n− 1},

EN can be equipped with inner product ⟨·, ·⟩EN
and norm ∥ · ∥EN

as follows:

⟨u, v⟩EN
=

N∑

t=1
u(t)v(t), ∥u∥EN

=
(

N∑

t=1
|u(t)|2

)1/2

for all u, v ∈ EN .
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Remark 2.1. It is easy to see that, for any u ∈ EN , we have

u(−(n− 1)) = u(N − (n− 1)),
u(−(n− 1) + 1) = u(N − (n− 1) + 1),
u(−(n− 1) + 2) = u(N − (n− 1) + 2),

...
u(0) = u(N),
u(1) = u(N + 1),

...
u(n) = u(N + n).

(2.1)

Clearly, (EN , ∥ · ∥EN
) is an N -dimensional reflexive Banach space, since

it is isomorphic to the finite dimensional space RN . When we say that the vector
u = (u(1), . . . , u(N)) ∈ RN , we understand that u can be extended to a vector in EN

so that (2.1) holds, that is, u can be extended to the vector

(u(N−(n−1)), u(N−(n−1)+1), . . . , u(N), u(1), u(2), . . . , u(N), u(1), . . . , u(n)) ∈ EN

and when we write EN = RN , we mean the elements in RN which have been extended
in the above sense.

Lemma 2.2 ([1]). Let u(t) be defined on Z. Then, for all k ∈ N∗ we have

∆ku(t) =
k∑

i=0
(−1)k−iCi

ku(t+ i), t ∈ Z.

Lemma 2.3. Let n ∈ N∗. For all u, v ∈ EN we have

N∑

t=1
∆ku(t− k)∆kv(t− k) = (−1)k

N∑

t=1
∆2ku(t− k)v(t), k ∈ [0, n]Z. (2.2)

Proof. For k = 0, it is easy to check the conclusion is true. We suppose that (2.2) is
true for k ∈ [0, n− 1]Z and we prove that it is true for k + 1, i.e.,

N∑

t=1
∆k+1u(t− (k + 1))∆k+1v(t− (k + 1)) = (−1)k+1

N∑

t=1
∆2k+2u(t− (k + 1))v(t).
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By the summation by parts formula and the fact that v(N + 1) = v(1) and
∆2k+1u(N − k) = ∆2k+1u(−k), it follows that

N∑

t=1
∆2k+2u(t− (k + 1))v(t) = ∆2k+1u(N − k)v(N + 1)

− ∆2k+1u(−k)v(1)

−
N∑

t=1
∆2k+1u(t− k)∆v(t)

= −
N∑

t=1
∆2k+1u(t− k)∆v(t).

So it follows from ∆2ku(N − (k − 1)) = ∆2ku(−(k − 1)), ∆v(N + 1) = ∆v(1) and by
the summation by parts formula, we get

N∑

t=1
∆2k+1u(t− k)∆v(t) = ∆2ku(N + 1 − k)∆v(N + 1)

− ∆2ku(1 − k)∆v(1)

−
N∑

t=1
∆2ku(t− (k − 1))∆2v(t)

= −
N∑

t=1
∆2ku(t− k)∆2v(t− 1)

= (−1)k+1
N∑

t=1
∆ku(t− k)∆k

[
∆2v(t− k − 1)

]

= (−1)k+1
N∑

t=1
∆ku(t− k)∆k+2v(t− k − 1).

Thus, we obtain

N∑

t=1
∆2k+2u(t− (k + 1))v(t) = (−1)k

N∑

t=1
∆ku(t− k)∆k+2v(t− k − 1).
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Similarly, using the summation by parts formula, ∆k+1v(N − k) = ∆k+1v(−k) and
∆ku(N − (k − 1)) = ∆ku(−(k − 1)), and we have

N∑

t=1
∆ku(t− k)∆k+2v(t− k − 1) = ∆ku(N − (k − 1))∆k+1v(N − k)

− ∆ku(−(k − 1))∆k+1v(−k)

−
N∑

t=1
∆k+1u(t− k)∆k+1v(t− k)

= −
N∑

t=1
∆k+1u(t− k)∆k+1v(t− k).

Finally, we obtain

N∑

t=1
∆2k+2u(t− (k + 1))v(t) = (−1)k+1

N∑

t=1
∆k+1u(t− k)∆k+1v(t− k)

= (−1)k+1
N∑

t=1
∆k+1u(t− (k + 1))∆k+1v(t− (k + 1))

which means that
N∑

t=1
∆k+1u(t− (k + 1))∆k+1v(t− (k + 1) = (−1)k+1

N∑

t=1
∆2k+2u(t− (k + 1))v(t).

The proof is complete.

For u ∈ EN , let Φ be the functional denoted by

Φ(u) = 1
2

N∑

t=1

n∑

k=0
|∆ku(t− k)|2 −

N∑

t=1
F (t, u(t)),

where F (t, x) =
∫ x

0 f(t, s)ds for (t, x) ∈ [1, N ]Z × R. Then, it is easy to see that
Φ ∈ C1(EN ,R) and its derivative Φ′(u) at u ∈ EN is given by

Φ′(u).v =
N∑

t=1

[
n∑

k=0
∆ku(t− k)∆kv(t− k) − f(t, u(t))v(t)

]
for any v ∈ EN .

By Lemma 2.3, Φ′ can be written as

Φ′(u).v =
N∑

t=1

[
n∑

k=0
(−1)k∆2ku(t− k) − f(t, u(t))

]
v(t) for any v ∈ EN .

Thus, finding solutions of (1.1) is equivalent to finding critical point of the functional Φ.
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Finally, we introduce the saddle point theorem, which will be used later in Section 4.

Definition 2.4. Let E be a real Banach space, and Φ ∈ C1(E,R) is a continuously
Fréchet differentiable functional defined on E. Recall that Φ is said to satisfy the
Palais–Smale (PS) condition if every sequence (um) ⊂ E, such that (Φ(um)) is bounded
and Φ′(um) → 0 as m → ∞, has a convergent subsequence. Here, the sequence (um)
is called a (PS) sequence.

Let Bρ denote the open ball in E about 0 of raduis ρ and let ∂Bρ denote its
boundary.

Theorem 2.5 ([14], the saddle point theorem). Let E = V ⊕W be a Banach space
with V ̸= {0}, dimV < ∞, Φ ∈ C1(E,R) and Q = Bρ ∩ V with ρ > 0. If

(1) a = max
∂Q

Φ < b = inf
W

Φ,
(2) Φ satisfies the (PS)c condition, where c = inf

γ∈Γ
sup
u∈Q

Φ (γ (u)), and

Γ = {γ ∈ C(Q,E) | γ (u) = u on ∂Q},

then c is a critical value of Φ such that c ≥ b.

3. SPECTRUM OF (1.2)

We consider the linear eigenvalue problem (1.2) corresponding to the problem (1.1).

Definition 3.1. λ is called eigenvalue of (1.2) if there exists u ∈ EN \ {0} such that

N∑

t=1

n∑

k=0
(−1)k∆2ku(t− k)v(t) = λ

N∑

t=1
u(t)v(t) for every v ∈ EN .

For proving Theorem 1.1, we start with three auxiliary results.

Lemma 3.2. Let n ∈ N∗. The eigenvalues of (1.2) are exactly the eigenvalues of the
matrix

∑n
k=0 Ak, where Ak, k ∈ [0, n]Z, is a symmetric matrix and its general form

for N ⩾ 2k + 1 is Ak = [aij ]1≤i,j≤N , with

aii = Ck
2k, i ∈ [1, N ]Z,

aii+j = (−1)jCk+j
2k , j ∈ [1, k]Z, i ∈ [1, N − j]Z,

aii+j = 0, j ∈ [k + 1, N − (k + 1)]Z, i ∈ [1, N − j]Z,
aii+j = (−1)N−jCk+N−j

2k , j ∈ [N − k,N − 1]Z, i ∈ [1, N − j]Z,
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that is,

Ak =




Ck
2k (−1)1Ck+1

2k · · · 0 · · · (−1)kC2k
2k · · · (−1)1Ck+1

2k

(−1)1Ck+1
2k Ck

2k (−1)1Ck+1
2k · · · 0 · · · (−1)3Ck+3

2k (−1)2Ck+2
2k

... (−1)1Ck+1
2k Ck

2k (−1)1Ck+1
2k · · · 0 · · · (−1)3Ck+3

2k

0
... . . . . . . . . . · · · . . . ...

... 0
... . . . . . . . . . ...

...

(−1)kCk
2k

... 0
... . . . . . . (−1)1Ck+1

2k (−1)2Ck+2
2k

... (−1)3Ck+3
2k

... . . . · · · . . . Ck
2k (−1)1Ck+1

2k

(−1)1Ck+1
2k (−1)2Ck+2

2k (−1)3Ck+3
2k · · · · · · · · · (−1)1Ck+1

2k Ck
2k




.

Proof. Let n ∈ N∗, k ∈ [0, n]Z and u, v ∈ EN . It is clear to see that the application

Lk : (u, v) −→
N∑

t=1
(−1)k∆2ku(t− k)v(t),

is bilinear and symmetric.
From the Riesz theorem, there exists a unique symmetric matrix Ak such that

Lk(u, v) = ⟨Aku, v⟩EN
for all u, v ∈ EN .

Thus the eigenvalues of (1.2) are exactly the eigenvalues of the matrix
∑n

k=0 Ak.
Now we will determine the matrix Ak. Using Lemma 2.2, we have

⟨Aku, u⟩EN
=

N∑

t=1
(−1)k∆2ku(t− k)u(t)

=
N∑

t=1
(−1)k

[ 2k∑

i=0
(−1)2k−iCi

2ku(t− k + i)
]
u(t)

=
N∑

t=1
(−1)ku(t− k)u(t) + (−1)k−1C1

2ku(t− (k − 1))u(t) + . . .

+ (−1)1Ck−1
2k u(t− 1)u(t) + Ck

2ku
2(t) + (−1)1Ck+1

2k u(t+ 1)u(t)
+ . . .+ (−1)kC2k

2ku(t+ k)u(t)

=
N∑

t=1
Ck

2ku
2(t) + 2 × (−1)1Ck+1

2k u(t)u(t+ 1) + . . .

+ 2 × (−1)kC2k
2ku(t)u(t+ k).
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So, we deduce that

Ak =




Ck
2k (−1)1Ck+1

2k · · · 0 · · · (−1)kC2k
2k · · · (−1)1Ck+1

2k

(−1)1Ck+1
2k Ck

2k (−1)1Ck+1
2k · · · 0 · · · (−1)3Ck+3

2k (−1)2Ck+2
2k

... (−1)1Ck+1
2k Ck

2k (−1)1Ck+1
2k · · · 0 · · · (−1)3Ck+3

2k

0
... . . . . . . . . . · · · . . . ...

... 0
... . . . . . . . . . ...

...

(−1)kCk
2k

... 0
... . . . . . . (−1)1Ck+1

2k (−1)2Ck+2
2k

... (−1)3Ck+3
2k

... . . . · · · . . . Ck
2k (−1)1Ck+1

2k

(−1)1Ck+1
2k (−1)2Ck+2

2k (−1)3Ck+3
2k · · · · · · · · · (−1)1Ck+1

2k Ck
2k




.

The proof of Lemma 3.2 is complete.

Remark 3.3. If v is replaced by u in (2.2), we get

N∑

t=1
|∆ku(t− k)|2 =

N∑

t=1
(−1)k∆2ku(t− k)u(t) = ⟨Aku, u⟩, k ∈ [0, n]Z. (3.1)

Thus A0 = IN is positive definite and Ak, k ∈ [1, n]Z, are positive semidefinite.

Put

al = (−1)l
n∑

j=l

Cj+l
2j , l ∈ [0, n]Z,

al = 0, l ∈ [n+ 1, N − (n+ 1)]Z,

al = (−1)N−l
n∑

j=N−l

Cj+N−l
2j , l ∈ [N − n,N − 1]Z.

We can write the matrix
∑n

k=0 Ak for N ≥ 2n+ 1 in the following form:

n∑

k=0
Ak =




a0 a1 a2 · · · an−1 an an+1 an+2 · · · aN−(n+1) aN−n aN−(n−1) · · · aN−2 aN−1

aN−1 a0 a1 · · · an−2 an−1 an an+1 · · ·
...

... aN−n · · · aN−3 aN−2

aN−2 aN−1 a0 · · · an−3 an−2 an−1 an · · ·
...

...
... · · · aN−4 aN−3

...
...

... . . . ...
...

...
... · · ·

...
...

... · · ·
...

...
...

...
...

... . . . ...
...

... · · ·
...

...
... · · ·

...
...

...
...

...
...

... . . . ...
... · · ·

...
...

... · · ·
...

...
...

...
...

...
...

... . . . ... · · ·
...

...
... · · ·

...
...

...
...

...
...

...
...

... . . . · · ·
...

...
... · · ·

...
...

...
...

...
...

...
...

...
... . . . ...

...
... · · ·

...
...

...
...

...
...

...
...

...
...

... . . . ...
... · · ·

...
...

...
...

...
...

...
...

...
...

...
... . . . ... · · ·

...
...

...
...

...
...

...
...

...
...

...
...

... . . . · · ·
...

...

a3 a4 a5
...

...
...

...
...

...
...

...
... a0 a1 a2

a2 a3 a4
...

...
...

...
...

...
...

...
... aN−1 a0 a1

a1 a2 a3
...

...
...

...
...

...
...

...
... aN−2 aN−1 a0




.
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Let J be the following matrix:

J =




0 1 0 · · · 0

0 . . . . . . . . . ...
... . . . . . . . . . 0

0 · · · . . . . . . 1
1 0 · · · 0 0



.

By some calculations, it is easy to check that
n∑

k=0
Ak = a0IN + a1J + a2J

2 + . . .+ aN−1J
N−1 = R(J), (3.2)

where R(x) =
∑N−1

l=0 alx
l.

Lemma 3.4. The matrix J satisfies the following proprieties:
(1) the eigenvalues of J are ωk = ei 2kπ

N , k ∈ [0, N − 1]Z,
(2) J is diagonalizable on C,
(3) E(ωk) = span(Xk), k ∈ [0, N − 1]Z, where E(ωk) is the ωk-eigenspace and

Xk = (1, ωk, ω
2
k, . . . , ω

(N−1)
k )T .

Proof. (1) Let PJ(x) the characteristic polynomial of J :

PJ(x) = det(J − xIN ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1 0 · · · 0

0 . . . . . . . . . ...
... . . . . . . . . . 0

0 · · · . . . . . . 1
1 0 · · · 0 −x

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Developing with respect to the first column, we get

PJ(x) = −x

∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1 0 · · · 0

0 . . . . . . . . . ...
... . . . . . . . . . 0
... · · · . . . . . . 1
0 · · · · · · 0 −x

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)N+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · · · · 0

−x . . . . . . . . . ...

0 . . . . . . . . . ...
... . . . . . . . . . 0
0 · · · 0 −x 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−x)N + (−1)N+1 = (−1)N (xN − 1).

However, the set of eigenvalues of J is the following:

UN =
{
ωk = ei 2kπ

N : k ∈ [0, N − 1]Z
}
.
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(2) Since the eigenvalues of J are simple, then J is diagonalizable on C.
(3) Let X = (x1, x2, . . . , xN )T ∈ CN . Since JX = (x2, x3, x4, . . . , xN , x1)T , we get

X ∈ E(ωk) = Ker(J − ωkIN ) ⇐⇒





x2 = ωkx1,

x3 = ωkx2,
...

xN = ωkxN−1,

x1 = ωkxN

⇐⇒ X ∈ span(Xk), k ∈ [0, N − 1]Z.

Therefore, Lemma 3.4 is proved.

Remark 3.5.
(1) B = (X0, X1, . . . , XN−1) is a basis formed by the eigenvectors of J .
(2) The matrix J can be written as

J = PDP−1, (3.3)

with

D =




1 0 · · · · · · 0

0 ω1
. . . . . . ...

... . . . ω2
. . . ...

... . . . . . . . . . 0
0 · · · · · · 0 ωN−1




and

P =




1 1 1 · · · 1
1 ω1 ω2 · · · ωN−1
1 ω2

1 ω2
2 · · · ω2

N−1
...

...
... . . . ...

1 ωN−1
1 ωN−1

2 · · · ω
(N−1)
N−1



,

where P is the invertible matrix from B to B1, B1 = (e1, e2, . . . , eN ) and ej , j ∈ [1, N ]Z,
is a column vector, where all terms are equal to 0 except the j-th term which is equal
to 1.

Lemma 3.6. The matrix
∑n

k=0 Ak is diagonalizable and

Sp
( n∑

k=0
Ak

)
= {R(λ) : λ ∈ Sp(J)},

where Sp(
∑n

k=0 Ak) and Sp(J) are the spectrum of the matrices
∑n

k=0 Ak and J ,
respectively.
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Proof. It is clear that the matrix
∑n

k=0 Ak is diagonalizable. From (3.3) we easily
deduce that

Jk = PDkP−1 for any k ∈ [0, N − 1]Z. (3.4)

Combining (3.2) and (3.4), we obtain

n∑

k=0
Ak = R(J) = PR(D)P−1, (3.5)

where

R(D) =




R(1) 0 · · · · · · 0

0 R(ω1) . . . . . . ...
... . . . R(ω2) . . . ...
... . . . . . . . . . 0
0 · · · · · · 0 R(ωN−1)



.

Thus, one has

Sp
( n∑

k=0
Ak

)
= {R(λ) : λ ∈ Sp(J)}.

The proof is complete.

Proof of Theorem 1.1. This proof is divided into two steps.
Step 1. Let λj , j ∈ [0, N − 1]Z, be the eigenvalue of

∑n
k=0 Ak. From Lemma 3.6

we have
λj = R(ωj),

where ωj = ei 2πj
N and R(x) =

∑N−1
l=0 alx

l. Therefore,

λj =
N−1∑

l=0
alω

l
j =

N−1∑

l=0
alω

l
j = a0 +

n∑

l=1
alω

l
j +

N−1∑

l=N−n

alω
l
j .

Since ωN−l
j = ωl

j and aN−l = al for any l ∈ [1, N − 1]Z, we get

λj = a0 +
n∑

l=1
alω

l
j +

n∑

l=1
alωl

j

= a0 +
n∑

l=1
al

[
ωl

j + ωl
j

]
= a0 + 2

n∑

l=1
al cos

(2πlj
N

)
.

(3.6)

Using again (3.6), we deduce that for any j ∈ [1, N − 1]Z

λN−j = a0 + 2
n∑

l=1
al cos

(2πl
N

(N − j)
)

= a0 + 2
n∑

l=1
al cos

(
2πl − 2πlj

N

)
= λj .
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Step 2. It is easy to see that E(λ0) = span(ϕ0). Let Y = (y1, y2, . . . , yN )T ∈ E(λj),
j ∈ [1, N − 1]Z . Denote Z = P−1Y = (z1, z2, . . . , zN )T . From (3.5), obviously
for any j ∈ [1, N − 1]Z,

R(D)Z = λjZ.

Since R(D)Z = (λ0z1, λ1z2, . . . , λN−1zN )T , we have




λ0z1 =λjz1,

λ1z2 =λjz2,
...

λN−jzN−j+1 =λjzN−j+1,
...

λN−1zN =λjzN .

This implies that
{
Z = zj+1ej+1 + zN−j+1eN−j+1,

Y = PZ = zj+1(1, ωj , ω
2
j , . . . , ω

(N−1)
j )T + zN−j+1(1, ωN−j , ω

2
N−j , . . . , ω

(N−1)
N−j )T .

Since zj ∈ C for any j ∈ [1, N ]Z, we can write zj as zj = z′
j + iz′′

j . Then we get

Y =




(z′
j+1 + iz′′

j+1) × 1
(z′

j+1 + iz′′
j+1) × ei 2πj

N

(z′
j+1 + iz′′

j+1) × ei 4πj
N

...
(z′

j+1 + iz′′
j+1) × ei

2(N−1)πj
N




+




z′
N−j+1 + iz′′

N−j+1
(z′

N−j+1 + iz′′
N−j+1) × ei

2π(N−j)
N

(z′
N−j+1 + iz′′

N−j+1) × ei
4π(N−j)

N

...
(z′

N−j+1 + iz′′
N−j+1) × ei

2(N−1)π(N−j)
N



.

As Y ∈ EN , we deduce that

Y = (z′
j+1 + z′

N−j+1)ϕj + (z′′
N−j+1 − z′′

j+1)ψj

with

ϕj =




1
cos( 2πj

N )
cos( 4πj

N )
...

cos( 2(N−1)πj
N )




and ψj =




0
sin( 2πj

N )
sin( 4πj

N )
...

sin( 2(N−1)πj
N )



.

Consequently, E(λj) = span(ϕj , ψj), j ∈ [1, N − 1]Z. The proof of Theorem 1.1 is
complete.

Remark 3.7. We denote r = N−1
2 when N is odd, or r = N

2 when N is even. Since
λj = λN−j for every j ∈ [1, N−1]Z, the matrix

∑n
k=0 Ak has r+1 different eigenvalues.

Therefore, these numbers can be written in the following way:

0 < λ0 < λ1 < λ2 . . . < λr.
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By (3.1), Φ can be rewritten as

Φ(u) = 1
2

〈 n∑

k=0
Aku, u

〉
EN

−
N∑

t=1
F (t, u(t)).

4. PROOF OF THEOREM 1.2

To apply Theorem 2.5 we shall do separate studies of the “geometry” of Φ
and its “compactness”. We decompose EN = V

⊕
W , where V =

⊕l
i=0 E(λi) and

W =
⊕N−1

i=l+1 E(λi).

Lemma 4.1. Under assumption (1.5), the functional Φ has the following properties:

(1) Φ(u) −→ −∞ as ∥v∥EN
→ ∞, v ∈ V ,

(2) Φ(u) −→ ∞ as ∥w∥EN
→ ∞, w ∈ W .

Proof. (1) Assume by contradiction that there exist a constant A and a sequence
(vm) ⊂ V with ∥vm∥EN

→ ∞ such that

A ≤ Φ(vm). (4.1)

According to (1.5), there exists r > 0 such that

1
2λlx

2 <
1
2αx

2 ≤ F (t, x) ≤ 1
2βx

2 <
1
2λl+1x

2, (t, |x|) ∈ [1, N ]Z × ]r,∞[ . (4.2)

Therefore,

1
2λlx

2 − F (t, x) ≤ 0, (t, |x|) ∈ [1, N ]Z × ]r,∞[ .

Then, for any (t, x) ∈ [1, N ]Z × R, we have

1
2λlx

2 − F (t, x) ≤ max
|x|≤r

∣∣∣12λlx
2 − F (t, x)

∣∣∣ = Ψ(t). (4.3)

Let xm = vm

∥vm∥EN
, then ∥xm∥EN

= 1. Since dimV < ∞, there exists some x ∈ V such
that

∥xm − x∥EN
−→

m→∞
0, ∥x∥EN

= 1.

In particular, x ≠ 0. We put H1 = {t ∈ [1, N ]Z : x(t) ̸= 0}. For t ∈ H1, |vm(t)| −→ ∞,
and by (4.2) we get

∑

t∈H1

1
2λl|vm(t)|2 − F (t, vm(t)) ≤ 1

2(λl − α)
∑

t∈H1

|vm(t)|2 −→ −∞, (4.4)

as m → ∞.
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So that using (4.3), (4.4) and the fact that (vm) ⊂ V , we obtain

Φ(vm) = 1
2

〈 n∑

k=0
Akvm, vm

〉
EN

−
N∑

t=1
F (t, vm(t))

≤ 1
2λl∥vm∥2

EN
−

N∑

t=1
F (t, vm(t))

≤
N∑

t=1

1
2λl|vm(t)|2 − F (t, vm(t))

=
∑

t∈H1

1
2λl|vm(t)|2 − F (t, vm(t))

+
∑

t∈[1,N ]Z\H1

1
2λl|vm(t)|2 − F (t, vm(t))

≤
∑

t∈H1

1
2λl|vm(t)|2 − F (t, vm(t)) +

∑

t∈[1,N ]Z\H1

Ψ(t) −→
m→∞

−∞.

This is contradiction with (4.1).
(2) Suppose on the contrary that Φ is not coercive in W . Thus, there is some

constant B and some sequence (wm) ⊂ W , with ∥wm∥EN
→ ∞, such that

Φ(wn) ≤ B. (4.5)

Since x −→ 1
2λl+1x

2 − F (t, x) is continuous and by (4.2), we have

1
2λl+1x

2 − F (t, x) ⩾ ξt, (t, x) ∈ [1, N ]Z × R, (4.6)

where
ξt = max

t∈[1,N ]Z

{
min
|x|≤r

[
1
2λl+1x

2 − F (t, x)
]
, 0
}
.

Let ym = wm

∥wm∥EN
, then ∥ym∥EN

= 1. Since dimW < ∞, there exists some y ∈ W

such that

∥ym − y∥EN
−→

m→∞
0, ∥y∥EN

= 1.

In particular, y ̸= 0. We put H2 = {t ∈ [1, N ]Z/y(t) ̸= 0}. For t ∈ H2, |wm(t)| −→
m→∞

∞
and again by (4.2), we obtain

∑

t∈H2

1
2λl+1|wm(t)|2 − F (t, wm(t)) ≥ 1

2(λl+1 − β)
∑

t∈H2

|wm(t)|2 −→ ∞, (4.7)

as m → ∞.
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Using again (4.6), (4.7) and (wm) ⊂ W , we have

Φ(wm) = 1
2

〈 n∑

k=0
Akwm, wm

〉
EN

−
N∑

t=1
F (t, wm(t))

≥ 1
2λl+1∥wm∥2

EN
−

N∑

t=1
F (t, wm(t))

≥
N∑

t=1

1
2λl+1|wm(t)|2 − F (t, wm(t))

=
∑

t∈H2

1
2λl+1|wm(t)|2 − F (t, wm(t))

+
∑

t∈[1,N ]Z\H2

1
2λl+1|wm(t)|2 − F (t, wm(t))

≥
∑

t∈H2

1
2λl+1|wm(t)|2 − F (t, wm(t)) +

∑

t∈[1,N ]Z\H2

ξt −→
m→∞

∞.

This contradicts to (4.5). The proof of Lemma 4.1 is complete.

Now, we show that Φ satisfies the (PS) condition.

Lemma 4.2. Under the assumption (1.5), Φ satisfies the (PS) condition on EN .

Proof. Let (um) ⊂ EN be a (PS) sequence, i.e.,

|Φ(um)| ≤ M and Φ′(um) −→ 0, as m → ∞,

where M is a constant. It clearly suffices to show that (um) remains bounded in (EN ).
We argue by contradiction. Defining zm = um

∥um∥EN
, we have ∥zm∥EN

= 1. There
is a convergent subsequence of (zm), call it (zm) again, such that zm −→ z ∈ EN

as m → ∞, ∥z∥EN
= 1. For every y ∈ EN , we have

⟨Φ′(um), y⟩EN

∥um∥EN

−→ 0, as m → ∞,

which means that

〈 n∑

k=0
Akzm, y

〉
EN

−
N∑

t=1

f(t, um(t))
∥um∥EN

y(t) −→ 0, as m → ∞. (4.8)

Set H3 = {t ∈ [1, N ]Z : z(t) ̸= 0}. From (1.5) it is clear that

λl < α ≤ f(t, um(t))
um(t) ≤ β < λl+1, t ∈ H3,



Spectrum of discrete 2n-th order difference operator. . . 505

which implies that there exists a subsequence of (um), still called (um), and γt ∈ [α, β]
such that

lim
m→∞

f(t, um(t))
um(t) = γt for t ∈ H3.

If t ∈ [1, N ]Z \H3, then f(t,um(t))
∥um∥EN

−→ 0 as m → ∞. Thus we can rewrite (4.8) as

〈 n∑

k=0
Akzm, y

〉
EN

−
∑

t∈H3

f(t, um(t))
um(t) zm(t)y(t) −→ 0, as m → ∞. (4.9)

On the other hand, it easy to see that
〈 n∑

k=0
Akzm, y

〉
EN

−
∑

t∈H3

f(t, um(t))
um(t) zm(t)y(t) −→

〈 n∑

k=0
Akz, y

〉
EN

−
∑

t∈H3

γtz(t)y(t),

(4.10)
as m → ∞. Combining (4.9) and (4.10), we get

〈 n∑

k=0
Akz, y

〉
EN

=
∑

t∈H3

γtz(t)y(t) for y ∈ EN .

We put

γ̂t =
{
γt, t ∈ H3,
α+β

2 , t ∈ [1, N ]Z \H3.

Since z(t) = 0 for any t ∈ [1, N ]Z \H3, we have
〈 n∑

k=0
Akz, y

〉
EN

=
N∑

t=1
γ̂tz(t)y(t) for every y ∈ EN . (4.11)

Let z = z− + z+, where z− ∈ V =
⊕l

i=0 E(λi) and z+ ∈ W =
⊕N−1

i=l+1 E(λi). Since
z ≠ 0, then z+ ̸= 0 or z− ̸= 0. Assume that z+ ̸= 0. Setting y = z+ − z− in (4.11),
we obtain

〈 n∑

k=0
Akz

+, z+
〉

EN

−
N∑

t=1
γ̂tz

+(t)2 =
〈 n∑

k=0
Akz

−, z−
〉

EN

−
N∑

t=1
γ̂tz

−(t)2. (4.12)

In other words, we have
〈 n∑

k=0
Akz

+, z+
〉

EN

−
N∑

t=1
γ̂tz

+(t)2 ≥ (λl+1 − β)∥z+∥2
EN

> 0

and
〈 n∑

k=0
Akz

−, z−
〉

EN

−
N∑

t=1
γ̂tz

−(t)2 ≤ (λl − α)∥z−∥2
EN

≤ 0.

But this gives us once more a contradiction from (4.12). The case where z− ̸= 0 can
be proved similarly. This completes the proof.
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Proof of Theorem 1.2. In view of Lemma 4.1 and Lemma 4.2 we may apply the saddle
point theorem. We set

W =
N−1⊕

i=l+1
E(λi) and Q =

{
v ∈ V =

l⊕

i=0
E(λi)|∥u∥EN

≤ R
}

with R > 0 being such that

a = max
∂Q

Φ < b = inf
W

Φ.

It follows that the functional Φ has a critical value c ≥ b and hence the problem (1.1)
has at least one solution. The proof of Theorem 1.2 is complete.
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