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Abstract. Let n € N*, and N > n be an integer. We study the spectrum of discrete linear
2n-th order eigenvalue problems

{22_0(1)’%2%@ — k) = Au(t), t € [1,N]z,
A'u(—(n —1)) = Alu(N — (n — 1)), i €10,2n — 1]z,

where )\ is a parameter. As an application of this spectrum result, we show the existence of
a solution of discrete nonlinear 2n-th order problems by applying the variational methods
and critical point theory.
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point theory.

Mathematics Subject Classification: 39A10, 34B08, 34B15, 58E30.

1. INTRODUCTION

Let n > 1 be a positive integer. We consider the following nonlinear 2n-th order
boundary value problems:

(1.1)

S eo(—1)FAu(t — k) = f(t,u(t)), te[l,N]z,
Alu(—(n—1)) = Au(N — (n—1)), i€ l0,2n— 1]z,

where N > n is an integer, [1, N]z denotes the discrete interval {1,2,..., N},
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A is the forward difference operator defined by

Au(t) = u(t + 1) — u(t),
Au(t) = u(t),
Alu(t) = A7 Au(t)) fori=1,2,3,...,2n
and fe€ C([1, N]z x R, R).
As usual, a solution of (1.1) is a function u : [—(n — 1), N + n]z — R which
satisfies both equations of (1.1).

Let us consider the spectrum of the linear boundary value problem corresponding
to the problem (1.1):

Yo (—1)FAZRy(t — k) = Au(t), t € [1,N]gz, (1.2)
Au(—(n—1)) = Au(N — (n—1)), i€[0,2n—1]z. '
In [1], Agarwal studied the second-order linear eigenvalue problem
—A%u(t —1) = pu(t), te€[l,N]z, (1.3)
u(0) = u(N +1) =0. '
He obtained p, = 4sin2(ﬁ) for r € [1, Nz, where p, is the eigenvalue of (1.3) and

& = (&(1),6(2),...,&(N))T is an eigenvector corresponding to the eigenvalue fi,,

where &,(j) = sin(345) for j € [1, N]z.

In [12], Kelly and Peterson studied the following eigenvalue problems:

u(0) =u(N +1) =0, (14)

{A(p(t — 1)Ault — 1)) + q(t)ult) + pm()u(t) = 0, ¢ € [1, Nz,
where p,m € C([1,N]z,]0,00[) and ¢ € C([1, N]z,R). They proved that the prob-
lem (1.4) has exactly N real and simple eigenvalues p;, t € [1, N]z satisfying
p1 < p2 < ...< ppy and the eigenfunction corresponding to u; has exactly ¢ — 1 simple
generalized zeros.

Moreover, when m(t) = 1, Agarwal et al. [2] generalized the results of the problem
(1.4) to the dynamic equations on time scales with Sturm-Liouville boundary condition.

It is well known that in different fields of research, such as computer science,
economics, neural networks, biological systems, population dynamics, mechanical
engineering, the mathematical modeling of important questions leads naturally to
the consideration of nonlinear difference equations. As a result, in recent years,
many existence results of nontrivial solutions for differential equations have been
obtained due to the relatively fast development of studying the boundary value
problems for differential equations, where various methods and techniques have been
used, for example, fixed point theorems methods, coincidence degree theory, topological
degree theory, we refer to [3-6,11,15]. Critical point theory as well as variational
methods are powerful tools to investigate the existence of solutions of various problems
on differential equations [7-10,13,14,16].
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In this paper, we study the spectrum of the problem (1.2), via matrix theory. And
at last, as an application of this spectrum result, we show the existence of a solution
of discrete nonlinear 2n-th order problems (1.1) by variational methods and critical
point theory. The main results in this paper are the following theorems:

Theorem 1.1. If N > 2n + 1, then the problem (1.2) has ezactly N real eigenvalues
Aj, j €[0,N — 1]z, which satisfies

Aj :a0+22?:1 ap COS(%U% .] [O7N ]
Aj = AN_j, €[, N — 1z,

with a; = (—1)" Z;L:l C’g;‘l for any 1 € [0,n]z. Moreover, the eigenspace E(\;) corre-
sponding to \j, j € [0, N — 1]z, is given as follows:

E(X\o) = span(¢y),
E();) =span(¢;,v¢;), j€[l,N—1]z,

where

05 = (¢;(0),0;(1),0;(2),...,¢;(N = 1))7,
V5 = (¥;(0),9;(1),9;(2),...,;(N —1))"

for j € [0,N — 1]z with ¢;(r) = cos(27r”) and ;(r) = sm(%”) forr € [0,N —1]z.
Theorem 1.2. Assume that there exist o, § € ]0,00[ and | € [0, N — 2]z such that
Ns? < as® < f(t,s)s < Bs? < Npa1s® for|s| > 7> 0andt € [1,N]z. (1.5)

Then the problem (1.1) has at least one solution.

The paper is arranged as follows. Section 2 contains some preliminary lemmas.
The main results are proved in Sections 3 and 4.

2. PRELIMINARY LEMMAS
In the present paper, we define a vector space En by

Enx ={u:[-(n—=1),N +n]z — R| Alu(—(n —1)) = Au(N — (n — 1)),
i=0,1,2,3,...,2n— 1},

En can be equipped with inner product (-,-)g, and norm || - || g, as follows:

N N 1/2
= Zu(t)v(t), lullgy = (Z |u(t)2> for all u,v € Ey.

t=1
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Remark 2.1. It is easy to see that, for any u € E, we have

u(=(n—1)) =u(N — (n - 1)),
u=(n—-1)+1)=u(N—-(m-1)+1),
(n—1)4+2)=u(N-(n—-1)+2),

u(~

2.1
u(0) = u(), &y
u(l) =u(N +1)
u(n) = u(N + n).
Clearly, (En,|| - |lgy) is an N-dimensional reflexive Banach space, since
it is isomorphic to the finite dimensional space R. When we say that the vector
u=(u(l),...,u(N)) € RY, we understand that u can be extended to a vector in Ey

so that (2.1) holds, that is, u can be extended to the vector
(w(N—(n=1)), u(N—(n=1)+1), .., u(N), u(1), u(2), .., u(N), u(1), ..., u(n)) € By

and when we write Eny = RY, we mean the elements in RV which have been extended
in the above sense.

Lemma 2.2 ([1]). Let u(t) be defined on Z. Then, for all k € N* we have
k . .
Afu(t) =Y (D) Clu(t +1), teL.
i=0

Lemma 2.3. Let n € N*. For all u,v € En we have

N N

> AFu(t — k)AF(t — k) = (-1)F > ARu(t — k)o(t), k€ [0,n]z. (2.2)

t=1 t=1
Proof. For k =0, it is easy to check the conclusion is true. We suppose that (2.2) is

true for k € [0,n — 1]z and we prove that it is true for k + 1, i.e.,

ZAk—H k+1))Ak+1 ( (k‘—|—1 k+1ZA2k+2 k—l—l)) ()
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By the summation by parts formula and the fact that v(N 4+ 1) = wv(1) and
A+ (N — k) = A%k F1y(—k), it follows that

Z A2t — (k + 1)v(t) = APy (N — k)o(N + 1)
— A u(—k)o(1)

ZA2k+1 AU( )

Z APyt — k) Aw(t).

So it follows from A%*y(N — (k — 1)) = A?*u(—(k — 1)), Av(N + 1) = Av(1) and by
the summation by parts formula, we get

N
ST ATyt~ k) Av(t) = A%u(N + 1 — k) Avo(N +1)
t=1

— A%y(1 — k)Aw(1)

ZA% — (k — 1))A%v(t)
N
Z “o(t—1)
1)kt Z AFu(t — k)AY [A%0(t — k —1)]
_ k+1 ZAk Ak+2 ( — k= 1).

Thus, we obtain

N
ZA?W (k+ 1) Z kAR 2yt — k —1).
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Similarly, using the summation by parts formula, A*ly(N — k) = A*¥+ly(—k) and
AFy(N — (k—1)) = A*u(—(k — 1)), and we have

Z AFu(t — K)AF 2yt — k — 1) = AFu(N — (k — 1))AMy(N — k)

— Atu(—(k — 1))ARo(-k)

- ZA"“ AN o(t — k)
N
ZAIH-I Ak-‘rl (t k)
Finally, we obtain
N
ZA2k+2 ( (k‘ + 1)) — k+1 ZAk+1 Ak+1 (t _ ki)
t=1
k+1 ZAIH-I ]i) + 1))Ak+1 ( _ (k + 1))
which means that
N
> ARt — (k+ 1) AR ot — (k4 1) 1)k+1 Z A2yt — (k +1))u(t).
The proof is complete. O

For u € Ey, let ® be the functional denoted by

N

Do 1At = K)[P =Y F(tult),

t=1 k=0 t=1

where F(t,z) = [ f(t,s)ds for (t,z) € [1,N]z x R. Then, it is easy to see that
NS C’l(EN,R) and its derivative ®'(u) at u € Ey is given by

N

23

t=1

z”: AFu(t — k)AFu(t — k) — f(t,u(t))v(t)] for any v € En.

By Lemma 2.3, ®’ can be written as

O (u).v = i [zn:

Thus, finding solutions of (1.1) is equivalent to finding critical point of the functional ®.

(—1)FAZFu(t — k) — f(t,u(t))] v(t) for any v € Ey.
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Finally, we introduce the saddle point theorem, which will be used later in Section 4.

Definition 2.4. Let E be a real Banach space, and ® € C!(E, R) is a continuously
Fréchet differentiable functional defined on E. Recall that & is said to satisfy the
Palais—Smale (PS) condition if every sequence (u,) C E, such that (®(u,y,)) is bounded
and ®'(u,,) — 0 as m — oo, has a convergent subsequence. Here, the sequence (u,,)
is called a (PS) sequence.

Let B, denote the open ball in E about 0 of raduis p and let 9B, denote its
boundary.

Theorem 2.5 ([14], the saddle point theorem). Let E =V @ W be a Banach space
with V # {0}, dimV < oo, ® € CY(E,R) and Q = B,NV with p > 0. If

(1) @ = max® < b = infd,
oQ w

(2) ® satisfies the (PS). condition, where ¢ = ig?sup@ (v (u)), and
Yl ue@

I={yeC@E)|y(u) =u on 0Q},

then c is a critical value of ® such that ¢ > b.

3. SPECTRUM OF (1.2)

We consider the linear eigenvalue problem (1.2) corresponding to the problem (1.1).
Definition 3.1. X is called eigenvalue of (1.2) if there exists u € En \ {0} such that

n

Z (—1)FAZFu(t — k)o(t) = )\Zu(t)v(t) for every v € Ep.

t=1 k=0 t=1
For proving Theorem 1.1, we start with three auxiliary results.
Lemma 3.2. Let n € N*. The eigenvalues of (1.2) are exactly the eigenvalues of the

matriz Yy ,_q Ak, where Ag, k € [0,n]z, is a symmetric matriz and its general form
fOT‘ N >2k+114s A, = [aij]1§i7j§N, with

Qi = Cgk’ 1€ [1,]\7}2,
Qii+j = (*1)jC§/jj7 JjE [Lk]Zai € [LN *.ﬂZ’
aii-‘rj:Oa jE[k—Fl,N—(k’—Fl)]Z,’LE[LN—]]Z,

gy = (~1)NTICEINTI jE[N -k N—1]zic[l,N—jlz,
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that is,
o CWOET a0 (R (e
(—D'Cyf C3 (—D'Cyf 0 (~1)%Cy% (-1)°Cyf
: (-nregt Cs, (-ntegt - 0 (—1PCgr
0 . . . . :
Ap = .
: 0 : :
(—-1)kCy, : 0 (=Dt (—)reR?
ST % S S T ch o (uiot
(=1)'Cyft (-1 (-1)°Cyyf (- )10 y Cs

Proof. Let n € N*| k € [0,n]z and u,v € Ey. It is clear to see that the application

YEAZE(t — )(t),

l
Mz

o~
Il
N

is bilinear and symmetric.
From the Riesz theorem, there exists a unique symmetric matrix Ay such that

Li(u,v) = (Agu,v)g, for all u,v € Ey.

Thus the eigenvalues of (1.2) are exactly the eigenvalues of the matrix Y ;_, Ag.
Now we will determine the matrix Ay. Using Lemma 2.2, we have

(Apu, u) gy = Z(—l)kAQku(t — Ek)u(t)

=D (=D D (=) Chult — k+ i) | u(t)

N 2k
=1 =0

= Z(—l)ku(t — k)u(t) + (=D Cqu(t — (k — 1)u(t) + . ..

+ (=D)'CE tu(t — Vu(t) + Chu®(t) + (=105 u(t + 1)u(t)
+ o (DRt 4 k)u(t)

N
= ChuP(t) + 2 x (~1)'Cyf ut)ult + 1) + ...

+2 x (=1)FC2Fu(t)u(t + k).
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So, we deduce that

C3, (—1)'Cyt 0 RN G L@ (~1)'Cyft
(=1)'Cyt C3, (=1)'Cyt 0 (-1D%C® (-0
(—1)'Cyt Cli (-ptogt - 0 (~1)°Cy°
0 : ' ’ ' '
A = .
: 0 : :
(—1)*Cy, : 0 5 (-D'Cyt (-0
: (—1PCy? : E : Cs, (—1ioytt
(1)'Cyft (F1)2057 (-1)Pcgr? (—1)'Cyt Cli
The proof of Lemma 3.2 is complete. O
Remark 3.3. If v is replaced by u in (2.2), we get
N N
Z |AFu(t — k)? = Z(—l)kA%u(t —k)u(t) = (Agu,u), k€ [0,n]z. (3.1)
t=1 t=1

Thus Ag = Iy is positive definite and Ag, k € [1,n]z, are positive semidefinite.

Put
a; = (—1)! ZC;;FZ, 1 €1[0,n]z,
j=l
a=0, len+1,N—(n+1)z,

a; = (—1)N! Z C’g;Nﬁl, le[N—-n,N-1]z.
vl

i l

We can write the matrix Y _, A for N > 2n + 1 in the following form:

ag ay az - Qp-1 [ ap41 Gpt2  *°° AN—(n41) AN-n ON—(n-1) aN-—2 aN-1
aN—1 ap a -+ Ap-2 Qp-1 an  Gpi1 : : AN -—n aN-3 GN-2
GN-2 AN-1 Qo - Ap-3 dp-2 G(np—1 (2% . : : AN—4 AN-3
n
k=0
as as  as : : : : : : : : ap ay as
as as  ag : : : : : : : : aN—1 ap ay

a ay az : : : : : : : : an—_2 an-1  ap
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Let J be the following matrix:

0 1 0 0
0

J = 0
0 IR |
1 0 0 0

By some calculations, it is easy to check that

ZAk:aOIN+a1J+a2J2—i—...—&—aN,lJN_l:R(J), (32)
k=0

where R(z) = leigl ajzt.
Lemma 3.4. The matriz J satisfies the following proprieties:

(1) the eigenvalues of J are wy = ¢°5, k € [0, N — 1]z,
(2) J is diagonalizable on C,
(3) E(wr) = span(Xy), k € [0,N — 1]z, where E(wy) is the wy-eigenspace and

X = (L, wg,wi,... ,w,(cN_l))T.

Proof. (1) Let Py(z) the characteristic polynomial of J:

—z 1 0 -~ 0
0 . .
Pj(x) =det(J —zIn)=|: - . .
0  eee e el 1
1 o -~ 0 -2

Developing with respect to the first column, we get

—z 1 0 - 0 1 0 - - 0
0 e .

Pyle)=—z|: - . . o |+EDY
T | O 0
0 v v 0 —x 0 -~ 0 -2 1

= ()" + ()N = ()Y - ),
However, the set of eigenvalues of J is the following:

Uy = {wk — W ke [0, N — 1]2}.
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(2) Since the eigenvalues of J are simple, then J is diagonalizable on C.

(3) Let X = (z1,22,...,25)7 € CN. Since JX = (v9,3,24,...,2n,71)", we get
T2 = Wk,
T3 = WgT2,

X € E(wg) = Ker(J —wiIn) <

IN = WETN-1,
1 = WgIN

< X espan(Xy), kel[0,N —1]z.

Therefore, Lemma 3.4 is proved. O
Remark 3.5.
(1) B = (Xo,X1,...,Xn_1) is a basis formed by the eigenvectors of J.
(2) The matrix J can be written as
J=PDP™, (3.3)
with
1 0 0
0 w1
D= wo
: 0
0 -+ -+ 0 wyn_g
and
1 1 1 e 1
1 w1 w2 tee WN—-1
p= |1 wi i o Wiy
) w{\}*l wé\}*l o wEVN.E”
where P is the invertible matrix from B to By, By = (e1, e, ...,en) and e;, j € [1,N]z,

is a column vector, where all terms are equal to 0 except the j-th term which is equal

to 1.

Lemma 3.6. The matriz y.,_, A is diagonalizable and

sp(kz_OAk) = {R() : A € Sp()},

where Sp(>_p_o Ar) and Sp(J) are the spectrum of the matrices Y ;_, Ar and J,

respectively.
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Proof. Tt is clear that the matrix Y.,_, Ay is diagonalizable. From (3.3) we easily
deduce that
Jt¥ = PDFP~1 forany k € [0, N — 1]z. (3.4)

Combining (3.2) and (3.4), we obtain

Zn: Ay = R(J) = PR(D)P 1, (3.5)
where
R(1) 0 0
0 R(wl)
R(D) = ' R(wg)
0
0 0 R(LUN 1)

Thus, one has

The proof is complete. O

Proof of Theorem 1.1. This proof is divided into two steps.

Step 1. Let Xj, j € [0,N — 1]z, be the eigenvalue of Y, Aj. From Lemma 3.6
we have

Aj = R(w)),
and R(z) = Zfigl a;z'. Therefore,

-1 N—-1 n N-1
Aj = g alwé = E aw; = ag + E alwé + E alwé
1=0 1=0 1=1 I=N-n
Since w™N ' = wl and ay_; = a; for any [ € [1, N — 1]z, we get

J J

Ao+ 3 o+ ) ai)
=1
- 2mlj
:ao—i—;a [w —|—w] —a0—|—2l§;alcos( NJ)

Using again (3.6), we deduce that for any j € [1, N — 1]z

- 2mrl 2mlj
AN :a0+22al cos (%(N—j)) —ao+22al cos (27rl WNJ) Aj.
1=1
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Step 2. It is easy to see that E()\g) = span(¢g). Let Y = (y1,y2,...,yn)’ € E())),
j € [I,N —1]z . Denote Z = P7'Y = (21,29,...,2n)T. From (3.5), obviously
for any j € [1, N — 1]z,

R(D)Z = \; Z.

Since R(D)Z = (Moz1,A\122, -, An—12n) T, we have
Aoz1 = Ajz1,
Az = Az,

AN—jZN—j+1 = AjZN—j+1,

)\N_lzN:)\ij.
This implies that
Z = Zj41€j41 + EN—j+1EN—j+1,
N-1 N-1
Y =PZ = zj1(1,wj,wi, ... ,wj(» ))T + v (L wn—j, Wl - ,wg\,_j ))T.

Since z; € C for any j € [1, N]z, we can write z; as z; = z + zz . Then we get

! - I
(2541 +izj ) x 1 zN_j+1+zzN_j+12 .
/ i3zl ’ - 1 e
(241 +iz] ) X e'N (N_ji1 Tizn_j41) X € (N )
, 4mg , o jAm(N—j
Y = (241 + ZZJ+1) X N + (ZijH + ZZijH) xe N
. L2(N—1)mj ' 2(N—1D)m(N—j)
/ " P ! i e VA
(sz +zzj+1) X e N (ZN7j+1+ZZN7j+1) X e N

AsY € Ey, we deduce that

Y = (21 + 2n_ji1)05 + (BN_jp1 — 2741

with
1 0 4
cos(2%2) sin(4)
¢j = COS(%) and ©; = sin(%)
COS( Z(N]—Vl)ﬂ'j) Sin(Q(]\./&l)ﬂ'j)
Consequently, E();) = span(¢;,v;), j € [1,N — 1]z. The proof of Theorem 1.1 is
complete. O

Remark 3.7. We denote r = % when N is odd, or r = % when N is even. Since
A\j = Ay for every j € [1, N —1]z, the matrix >_;_, A has r+1 different eigenvalues.

Therefore, these numbers can be written in the following way:

0<)‘0<>\1<>\2~~~<>\r-
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By (3.1), ® can be rewritten as

1 n N
4{F ), - S
k=0

Noot=1

4. PROOF OF THEOREM 1.2

To apply Theorem 2.5 we shall do separate studies of the “geometry” of &
and its ¢ compactness”. We decompose Eny = VE W, where V = @é:o E()\;) and

W = 691 l+1 ( )

Lemma 4.1. Under assumption (1.5), the functional ® has the following properties:

(1) ®(u) — —o0 as ||v||gy — 0, vEV,
(2) ®(u) — 0 as ||w||gy — 00, w e W.

Proof. (1) Assume by contradiction that there exist a constant A and a sequence
(vmm) C V with ||uy,||Ey — o0 such that

A< Q(vp). (4.1)

According to (1.5), there exists r > 0 such that
Ly o 1 5 Lo 1 2
5)\@ < o < F(t,z) < 551 < 5)\1+1x , (t,|z|) € [1, N]z x Jr,o0[.  (4.2)

Therefore,

1
§>\le - F(tax) S 07 (t7 |.I‘|) € [17N]Z X ]T7OO['

Then, for any (¢,z) € [1, N]z x R, we have

1 1

5)\[&62 — F(t,x) < ‘Inla<x 5)\@2 — F(t,x)| = U(t). (4.3)
Let x,,, = W then ||z || gy = 1. Since dimV < oo, there exists some = € V' such
that

[em —2lley — 0, |lzlezy = 1.
m— o0

In particular, x # 0. We put Hy = {t € [1, N]z : (t) # 0}. For t € Hy, |vm(t)] — oo,
and by (4.2) we get

}_\

Z )\l\vm F(t,om(t)) < 5 (M — ) ) D om)P — =00, (4.4)

t€H1 teHq

as m — oQ.
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So that using (4.3), (4.4) and the fact that (v,,) C V, we obtain

n N
P (vm) = %< ZAkvm,vm>E =Y F(t,vm(t)
k= Moo=
1 0 N
< Mol - ZF(t,vm(t))
< Z SAom (B2 = F(t,0(t))

Z )\l|vm F(t,vm(t))

tEHl
1
Y Gl = F(tom(®)
tE[lN]Z\Hl
< 3 AP ~ Flton) + Y W) — o
teH1 te[1,N]z\H1

This is contradiction with (4.1).
(2) Suppose on the contrary that ® is not coercive in W. Thus, there is some
constant B and some sequence (wy,) C W, with ||wy,||gy — 00, such that

d(w,) < B. (4.5)
Since  — A412? — F(t,x) is continuous and by (4.2), we have

1

5)%1952 —F(t,x) > &, (t,x)€[1,N)z xR, (4.6)

where
1
= ma min |=\22 — F(t,z)|,0 7.

b te[1,N X] {|:El<r [2 b ( )} }

Let ym = qp—, then lymllzy = 1. Since dimW < oo, there exists some y € W
mllBN

such that

”ym _yHEN — 0, ||y||EN =1
m—r 00

In particular, y # 0. We put Hy = {t € [1, N]z/y(t) # 0}. For t € Hy, |wn,(t)] — oo

— 00

and again by (4.2), we obtain

—_

Z )‘l+1|wm | F(t,wn(t) > 5(Aip1 — Z |win (1) (4.7)

tEHz teHo

[\D

as m — oQ.
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Using again (4.6), (4.7) and (w,,) C W, we have

n N
©wm) = 5( 3 Avtmm) =32 Flt ()
N
%mnwmn%N =3 F(twn (1)

t=1

Y

> Z A1 | Wi (1) F(t, wp(t))

= Z 5)\1+1|wm(t)|2 *F(t;wm(t))

teH2
1
+ Z 5)\l+1‘wm(t)|2 - F(tvwm(t))
[1 NJ]z\H2
> 5 I lwm @ = F(t wn () + Y & —
teH2 te[1,N]z\ Ha
This contradicts to (4.5). The proof of Lemma 4.1 is complete. O

Now, we show that ® satisfies the (PS) condition.
Lemma 4.2. Under the assumption (1.5), ® satisfies the (PS) condition on En.

Proof. Let (um) C En be a (PS) sequence, i.e.,
|®(um)| <M and @' (uy,) — 0, as m — oo,

where M is a constant. It clearly suffices to show that (u,,) remains bounded in (Ey).

We argue by contradiction. Defining z, = p—, we have lzmlley = 1. There
mllEN

is a convergent subsequence of (z,,), call it (z,,) again, such that z,, — 2z € En
as m — o0, ||z||gy = 1. For every y € Ey, we have

' (um),
(@ (), Yo )y>EN—>O, as m — 0o,

|umll Ex
which means that
n N
t, U (
<2Akzm, > Z f(tu y(t) — 0, as m — oco. (4.8)
= HumHEN

Set Hs = {t € [1,N]z : 2(t) # 0}. From (1.5) it is clear that

f(t um(t))
U (1)

AN <a< <B < Ng1, te€Hs,
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which implies that there exists a subsequence of (u,,), still called (u,,), and v € [a, 5]
such that

f(t, um (1))

R =~ forte Hs.

If t € [1,N], \ Hs, then M — 0 as m — oo. Thus we can rewrite (4.8) as

[um &
<2Akzm,y>EN - Z Wzm(t)y(t) — 0, asm — oo. (4.9)
k=0 te Hs m

On the other hand, it easy to see that

(X Ay, = 3 HeOh ) — (X Aizn), — 3 ettt
k=0 N teH; m k=0

N

teHs
(4.10)
as m — oo. Combining (4.9) and (4.10), we get
<2Akz,y>EN = Z vz(t)y(t) fory € En.
k=0 teHs
We put
~ Yt te H3a
TT 22, te 1N, \ Hs.
Since z(t) = 0 for any t € [1, N], \ Hs, we have
n N
<2Akz,y>EN = Z’%z(t)y(t) for every y € En. (4.11)
k=0 t=1
Let z =2z + 27, where 2= € V= @'_, E(\) and 2+ e W = @ l+1 (/\1) Since
2z # 0, then 27 # 0 or 2= # 0. Assume that z+ # 0. Setting y = 2+ in (4.11),
we obtain

n N n N
(Y atzr) =3 = (Y A2T) =Y G (412)
k=0 Noot=1 k=0 Moo=l

In other words, we have

n N
<2Akz+,z+> Z > (Aig1 — >||Z+||?3N >0
k=0 t=1

and
N

(Y Azmz) =35 0 < (- a)lle [, <.
k=0

Moo=t
But this gives us once more a contradiction from (4.12). The case where z~ # 0 can
be proved similarly. This completes the proof. O
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Proof of Theorem 1.2. In view of Lemma 4.1 and Lemma 4.2 we may apply the saddle
point theorem. We set

N-1 l
W= B0 and Q= {veV =P ENIulsy < R}
i=0

i=l+1

with R > 0 being such that

a = max® < b = infd.
oQ 1%

It follows that the functional ® has a critical value ¢ > b and hence the problem (1.1)
has at least one solution. The proof of Theorem 1.2 is complete. O
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