PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical investigation of the turbulent flow generated with a radial Turbine using a converging hollow blade

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to investigate the effect of the blade shape on the characteristic of the flow patterns in a stirred tank. A new impeller blade design has been proposed. It is characterized by a converging hollow. The investigations of the flow structure generated in the vessel are made by using the computer code ANSYS CFX (version 16.0). The analysis has shown that the converging hollow blade yields highly radial flows which gave an increase in the radial velocity by 35% with less power consumption than the flat blade. Also, the effectiveness of the energy dissipation and the quality of mixing has been obviously noted. A validation test of our predicted results with other literature data was done, and a satisfactory agreement has been found.
Słowa kluczowe
Rocznik
Strony
129--137
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Département de génie mécanique, Laboratoire des Sciences et Ingénierie Maritimes, Faculté de Génie Mécanique, Université des Sciences et de la Technologie Mohamed Boudiaf d’Oran, B.P. 1505 Oran, Algeria
autor
  • Département de génie mécanique, Laboratoire des Sciences et Ingénierie Maritimes, Faculté de Génie Mécanique, Université des Sciences et de la Technologie Mohamed Boudiaf d’Oran, B.P. 1505 Oran, Algeria
autor
  • Institute of Science and Technology, University Center Ahmed Salhi, Ctr Univ Naâma, 45000, Algeria
Bibliografia
  • 1. Van’t riet, K., Boom, J.M. & Smith. J.M. (1976). Power consumption impeller coalescence and recirculation in aerated vessels. Trans. I. Chem E. 541, 124-131.
  • 2. Bakker, A., Myers, K.J. & Smith, J.M (1994). How to disperse gases in liquids. Chemical Engineering. 101, 98-104, from http://www.bakker.org/cfm/publications/HowtoDisperse-GasesinLiquids1994.pdf
  • 3. Nienow, A.W. (1996). Gas-Liquid Mixing Studies, A comparison of Rushton Turbines with some modern impellers. Trans. I. Chem. E. 74 A, 417-423. DOI: 10.1002/cjce.5450800409.
  • 4. Nagata, S. (1975). Mixing Principals and Applications. John Wiley & sons Halstead Press Tokyo Japan.
  • 5. Suzukawa, K., Mochizukib, S. & Osaka, H. (2006). Effect of the attack angle on the roll and trailing vortex structures in an agitated vessel with a paddle impeller. Chem. Engineer. Sci. 61, 2791-2798. DOI: http://dx.doi.org/10.1016/j.ces.2005.10.063.
  • 6. Kumaresan, T. & Joshi, J.B. (2006). Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem. Eng. Sci. 1153, 173-193. DOI: 10.1016/j.cej.2005.10.002.
  • 7. Driss, Z., Bouzgarrou, G., Chtourou, W., Kchaou, H. & Abid, M.S. (2010). Computational studies of the pitched blade turbines design effect on the stirred tank flow characteristics. European J. Mechanics B/Fluids. 29, 236-245. DOI: 10.1016/j.euromechflu.2010.01.006.
  • 8. Ammar, M., Chtourou, W., Driss, Z. & Abid, M.S. (2011). Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system. Energy, 36, 5081-5093. DOI: http://dx.doi.org/10.1016/j.energy.2011.06.002.
  • 9. Aubin, J., P. Mavros, D. Fletcher, J. & Bertrand C. Xuereb. (2001) .Effect of axial agitator configuration up-pumping down-pumping reverse rotation on flow patterns generated in stirred vessels. Chem. Engineer. Res. Design. 79, 845-856. DOI: 10.1205/02638760152721046.
  • 10. Chapple, D., S. kresta, Wall, A. & Afcan, A. (2002). The effect of Impeller and Tank Geometry on Power Number for a pitched blade turbine. Chem. Engineer. Res. Design. 804, 364-372. DOI: http://dx.doi.org/10.1205/026387602317446407
  • 11. Ameur, H. & Bouzit, M. (2013) .Numerical investigation of flow induced by a disc turbine in unbaffled stirred tank. Acta Sci. Tech. 35, 469-476. DOI: http://dx.doi.org/10.4025/actascitechnol.v35i3.15554
  • 12. Ameur, H. & Bouzit, M. (2013). 3D hydrodynamics and shear rates variability in the united states pharmacopeia paddle dissolution apparatus. Int. J. Pharm. 452, 42−51. DOI: 10.1016/j.ijpharm.2013.04.049
  • 13. Ameur, H. (2015) .Energy efficiency of different impellers in stirred tank reactors. Energy. 93, 1980-1988. DOI: doi. org/10.1016/j.energy.2015.10.084.
  • 14. Khapre, A. & Munshi, B. (2014) .Numerical Comparison of Rushton Turbine and CD-6 Impeller in Non-Newtonian Fluid Stirred Tank. International Scholarly and Scientific Research & Innovation. 811, 1235-1242. Available at: scholar.waset.org/1999.2/5555526.
  • 15. Driss, Z., Karray, S., Chtourou, W., Kchaou, H. & Abid, M.S (2012).A study of mixing structure in stirred tanks equipped with multiple four-blade Rushton impellers., The Archive of Mechanical Engineering. 591, 53-72. DOI: https://doi.org/10.2478/v10180-012-0004-3.
  • 16. Ben Amira, B., Driss, Z. & Abid, M.S. (2015). PIV study of the turbulent flow in a stirred vessel equipped by an eight concave blades turbine. Fluid Mechanics. 12, 5-10. DOI: 10.11648/j.fm.20150102.11.
  • 17. Ben Amira, B., Driss, Z. & Abid, M.S. (2015).Experimental study of the up-pitching blade effect with a PIV application. Ocean Engineer. 102, 95-104. DOI: 10.1016/j.oceaneng.2015.08.063.
  • 18. Cooke, M. & Heggs, P.J. (2005). Advantages of the hollow (concave) turbine for multi-phase agitation under intense operating conditions. Chem. Engineer. Sci. 60, 5529-5543. DOI: https://doi.org/10.1016/j.ces.2005.05.018
  • 19. Ghotli, R.A., Abdul, Aziz A.R., Ibrahim, S., Baroutian, S. & Arami-Niya, A. (2013). Study of various curved-blade impeller geometries on power consumption in stirred vessel using response surface methodology. J. Taiwan Inst. Chem. Eng.44, 192-201. DOI: http://dx.doi.org/10.1016/j.jtice.2012.10.010
  • 20. Jing, Z., Zhengming, G. & Yuyun, B., (2011). Effects of the Blade Shape on the Trailing Vortices in Liquid Flow Generated by Disc Turbines. Chinese J. Chem. Engineer. 19(2), 232-242. DOI: 10.1016/S1004-9541(11)60160-2.
  • 21. Chtourou, W., Ammar, M., Driss, Z. & Abid, M.S. (2011). Effect of the turbulence models on Rushton turbine generated flow in a stirred vessel. Cent. Eur. J. Eng. 1(4), 380-389. DOI: 10.2478/s13531-011-0039-0.
  • 22. Jaworski, Z. & Zakrzewska, B. (2002). Modeling of the turbulent wall jet generated by a pitched blade turbine impeller. Trans Ichem. E. 80(8), 846-854. DOI: http://dx.doi.org/10.1205/026387602321143381.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35404ad6-5646-42bc-bb5e-aa6e5d078c56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.