PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation and characterization of furfuryl mercaptan-β-cyclodextrin inclusion complex and its thermal release characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Furfuryl mercaptan has the aroma characteristics of coffee. However, it is unstable during storage of coffee brew and roasted coffee. In order to enhance the stability of furfuryl mercaptan, furfuryl mercaptan-β-cyclodextrin inclusion complex was synthesized using the precipitation method in this work. Fourier transform infrared spectroscopy, x-ray diffraction, and thermogravimetric analysis (TG) were used to characterize the resulting products. The interaction of furfuryl mercaptan with β-cyclodextrin was inve-stigated by the molecular mechanics (MM) method. These changes in FTIR and XRD gave supporting evidence for the successful formation of furfuryl mercaptan-β-cyclodextrin inclusion complex. The TG results showed that the formation of furfuryl mercaptan-β-cyclodextrin inclusion complex could improve the thermal stability of furfuryl mercaptan and provide a long-lasting effect. The structure of furfuryl mercaptan-β-cyclodextrin inclusion complex with the minimum energy was obtained by MM2 calculation, and the minimum binding energy was –77.0 kJ mol–1 at –1.96 × 10–10 m.
Rocznik
Strony
35--40
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Shanghai Institute of Technology, No.100 Haiquan Road, Shanghai, 201418, PR China
autor
  • Shanghai Institute of Technology, No.100 Haiquan Road, Shanghai, 201418, PR China
autor
  • Shanghai Institute of Technology, No.100 Haiquan Road, Shanghai, 201418, PR China
autor
  • 3035 Sable Ridge Dr. Ottawa. ON K1T 3R9, Canada
autor
autor
Bibliografia
  • 1. Burdock, G.A. (2010). Fenaroli’s handbook of flavor ingredients (6th ed.). Boca Raton, USA: CRC Press.
  • 2. Sun, Z., Hayat, K., Yu, J., Karangwa, E., Duhoranimana, E., Zhang, X. & Xia, S. (2018). Quantification of free 2-furfurylthiol in coffee brew using a prefabricated coffee model. Food Anal. Method. 11, 654–662. DOI: 10.1007/s12161-017-1034-8.
  • 3. Sun, Z., Yang, N., Liu, C., Linforth, R.S.T., Zhang, X., & Fisk, I.D. (2019). Aroma binding and stability in brewed coffee: A case study of 2-furfurylthiol. Food Chem. 295, 449–455. DOI: 10.1016/j.foodchem.2019.05.175.
  • 4. Hofmann, T. & Schieberle, P. (2002). Chemical interactions between odor-active thiols and melanoidins involve in the aroma staling of coffee beverages. J. Agr. Food Chem. 50, 319–326. DOI: 10.1021/jf010823n.
  • 5. Hofmann, T., Czerny, M., Calligaris, S. & Schieberle, P. (2001). Model studies on the influence of coffee melanoidins on flavor volatiles of coffee beverages. J. Agr. Food Chem. 49, 2382–2386. DOI: 10.1021/jf0012042.
  • 6. Müller, C. & Hofmann, T. (2007). Quantitative studies on the formation of phenol/2-furfurylthiol conjugates in coffee beverages toward the understanding of the molecular mechanisms of coffee aroma staling. J. Agr. Food Chem. 55, 4095–4102. DOI: 10.1021/jf070095p.
  • 7. Sun, Z., Gui, H., Yang, N., Ayed, C., Zhang, X. & Fisk, I.D. (2020). Enhancement of coffee brew aroma through control of the aroma staling pathway of 2-furfurylthiol. Food Chem. 322, 126754. DOI: 10.1016/j. foodchem.2020.126754.
  • 8. Celebioglu, A., Yildiz, Z.I. & Uyar, T. (2018). Fabrication of electrospun eugenol/cyclodextrin inclusion complex nanofibrous webs for enhanced antioxidant property, water solubility, and high temperature stability. J. Agr. Food Chem. 66, 457–466. DOI: 10.1021/acs.jafc.7b04312.
  • 9. Yuan, C., Thomas, D.S., Hook, J.M., Qin, G., Qi, K. & Zhao, J. (2019). Molecular encapsulation of eucalyptus staigeriana essential oil by forming inclusion complexes with hydroxypropyl-β-cyclodextrin. Food Bioprocess Tech. 12, 1264–1272. DOI: 10.1007/s11947-019-02291-1.
  • 10. Yildiz, Z.I., Celebioglu, A., Kilic, M.E., Durgun, E. & Uyar, T. (2018). Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity. J. Mater. Sci. 53, 15837–15849. DOI: 10.1007/s10853-018-2750-1.
  • 11. Saffarionpour, S. (2019). Nanoencapsulation of hydrophobic food flavor ingredients nanoencapsulation of hydrophobic food flavor ingredients. Food Bioprocess Tech. 12, 1157–1173. DOI: 10.1007/s11947-019-02285-z.
  • 12. Pires, F.Q., Pinho, L.A, Freire, D.O., Silva, I.C.R., Sa-Barreto, L.L., Cardozo-Filho, L., Gratieri, T., Gelfuso, G.M. & Cunha-Filho, M. (2019). Thermal analysis used to guide the production of thymol and Lippia origanoides essential oil inclusion complexes with cyclodextrin. J. Therm. Anal. Calorim. 137, 543–553. DOI: 10.1007/s10973-018-7956-6.
  • 13. Ikeda, H., Fukushige, Y., Matsubara, T., Inenaga, M., Kawahara, M., Yukawa, M., Fujisawa, M., Yukawa, E. & Aki, H. (2016). Improving water solubility of nateglinde by complexation of β-cyclodextrin. J. Therm. Anal. Calorim. 123, 1847–1850. DOI: 10.1007/s10973-015-4714-x.
  • 14. Zhu, G., Xiao, Z. & Zhu, G. (2017) Preparation, characterization and release kinetics of mentha-8-thiol-3-one-β-cyclodextrin inclusion complex. Polym. Bull. 74, 2263–2275. DOI: 10.1007/s00289-016-1835-8.
  • 15. Zhu, G., Jiang, X., Zhu, G. & Xiao, Z. (2020). Encapsulation of difurfuryl disulfde in β-cyclodextrin and release characteristics of the guest from its inclusion complex. J. Incl. Phenom. Macro. Chem. 96, 263–273. DOI: 10.1007/s10847-019-00967-x.
  • 16. Zhu, G., Zhu, G. & Xiao, Z. (2019). A review of the production of slow-release flavor by formation inclusion complex with cyclodextrins and their derivatives. J. Incl. Phenom. Macro. Chem. 95, 17–33. DOI: 10.1007/s10847-019-00929-3.
  • 17. Zhu, G., Feng, N., Xiao, Z., Zhou, R. & Niu, Y. (2015). Production and pyrolysis characteristics of citralmonochlorotriazinyl-β-cyclodextrin inclusion complex, J. Therm. Anal. Calorim. 120, 1811–1817. DOI: 10.1007/s10973-015-4498-z.
  • 18. Sun, B. & Zhang, X. (1993). Study on the synthesis of furfuryl mercaptan. Fine Chemicals, 10, 14–15. DOI: 10.13550/j.jxhg.1993.04.007.
  • 19. Yao, L., Su, C., Qi, L. & Liu, C. (1999). The substituent structures and characteristic infrared spectra of α-furan esters. Spectrosc. Spect. Anal. 19, 32–34. DOI: 10.3321/j.issn:1000-0593.1999.01.011.
  • 20. Yao, L., Su, C., Xu, R., Qi, L. & Yang, Y. (1998). Synthesis of α-furfuryl mercaptan and α-furfurylthiol carboxylate and their flavor characteristics. Fine Chemicals, 15, 21–24. DOI: 10.13550/j.jxhg.1998.05.008.
  • 21. Sha, S., Xie, J.C. & Sun B.G. (2008). Synthesis of flavor furfuryl 2-methyl-3-furyldisulfide. Food Sci. Technol. 5, 140–143. DOI: 10.13684/j.cnki.spkj.2008.05.011.
  • 22. Zhu, G., Xiao, Z., Zhou, R., Zhu, G. & Niu, Y. (2016). Kinetics and release characteristics of menthyl acetate from its β-cyclodextrin inclusion complex by thermogravimetric analysis. J. Incl. Phenom. Macro. Chem. 84, 219–224. DOI: 10.1007/s10847-016-0599-y.
  • 23. Zhu, G., Xiao, Z., Zhu, G. & Rujunzhou, Niu, Y. (2016). Encapsulation of l-menthol in hydroxypropyl-β-cyclodextrin and release characteristics of the inclusion complex. Pol. J. Chem. Technol. 18, 110–116. DOI: 10.1515/pjct-2016-0056.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-353fda8a-6fe0-43ba-bc7a-ad05bafa159a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.