PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A comparative analysis of concrete strength using igneous, sedimentary and metamorphic rocks (crushed granite, limestone and marble stone) as coarse aggregate

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza porównawcza wytrzymałości betonu z kruszywem grubym w postaci skał magmowych, osadowych i metamorficznych (łamany granit, wapień i marmur)
Języki publikacji
EN
Abstrakty
EN
This paper presents a comparative analysis of the effect of the physical properties of coarse aggregate (igneous rock - crushed granite stone; sedimentary rock - limestone and metamorphic rock - marble stone) on the compressive strength of Portland cement concrete and compare their characteristic strength. Tests such as sieve analysis, specific gravity, bulk density, void ratio, porosity, water absorption and aggregate impact value were carried out on aggregates to ascertain their physical properties as they affect the strength of concrete. The concrete strength comparison was confined to characteristic concrete strength of grade 20 and 30 N/mm² only. Two different mix proportions of 1:2:4 and 1:3:6, and water cement ratio of 0.5 and 0.6 for both mixes were used to cast concrete cubes which were hydrated for 7, 14, and 28-day periods respectively. The compressive strength tests conducted on the cast cubes was found to be within the stipulated value of concrete strength of 26.0 N/mm² for 28-day hydration period by British Standard specification. The 28-day concrete cubes cast with these aggregates shows that, at the low strength of 20 N/mm², igneous rock - crushed granite stone c concrete had the highest strength of 26.45 N/mm² followed by Sedimentary-limestone with 26.11 N/mm² and metamorphic rock - marble stone 26.03 N/mm² in that order, and also at the high strength of 30 N/mm², crushed granite concrete gave the highest strength to be 30.11 N/mm² followed by granite 29.78 N/mm² and limestone 29.53 N/mm² in that order.
PL
W artykule przedstawiono analizę porównawczą wpływu właściwości fizycznych kruszywa grubego (skały magmowej - łamany granit, skały osadowej - wapienie i skały metamorficznej - marmur) na ściskanie betonu poprzez porównanie charakterystycznej wytrzymałości. Kruszywo grube poddano badaniom: uziarnienia, gęstości nasypowej, gęstości, porowatości, wskaźnika porowatości, absorpcji wody i współczynnika wpływu kruszywa w celu ustalenia właściwości fizycznych, jakie mają wpływ na wytrzymałość betonu. Porównanie wytrzymałości betonu ograniczono do charakterystycznej wytrzymałości na ściskanie betonu o wartości 20 i 30 N/mm². Do wykonania sześciennych kostek betonowych zastosowano dwie różne proporcje mieszanki 1:2:4 i 1:3:6 i dwie wartości stosunku cementowo-wodnego 0,5 i 0,6, które dojrzewały odpowiednio przez 7, 14 i 28 dni. Testy wytrzymałości na ściskanie przeprowadzone na kostkach sześciennych wykazały, że przewidywana wytrzymałość betonu dla próbek 28-dniowych wynosi 26,0 N/mm², opierając się na normie brytyjskiej. Badania 28-dniowych betonowych kostek, w których zastosowano analizowane kruszywa grube wykazały, że dla wytrzymałości 20 N/mm²: beton z granitem miał największą wytrzymałość - 26,45 N/mm², beton z wapieniem 26,11 N/mm² i z marmurem - 26,03 N/mm². Dla wytrzymałości 30 N/mm² również beton z granitem miał największą wytrzymałość: 30,11 N/mm², następnie z granitem 29.78 N/mm² i wapieniem 29,53 N/mm².
Rocznik
Strony
179--191
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] Jackson N., Civil Engineering Materials, Macmillan Press Ltd, London 1981.
  • [2] LaLonde W.S., Janes M.F., Concrete Engineering Handbook, Library of Congress, New York 1961.
  • [3] US Concrete Industry Report, Library of Congress, New York 2001.
  • [4] Neville A.M., Properties of Concrete, ELSB 5th Edition, Pearson Education Publishing Ltd. London 2005.
  • [5] Taylor G.D., Materials in Construction. Second Edition, Longman Group Ltd, Longman House, Burnt Mill 1994.
  • [6] Rajput R.K., Engineering Materials, 3rd edition, S. Chard & Company Ltd, Ram Nagar, New Delhi 2006.
  • [7] Barry R., The Construction of Buildings, Volume 1, 6th Edition. East-West Press Limited, New Delhi 1999.
  • [8] Murdock L.J., Brook K.M., Concrete Material and Practice, Fifth Edition. Edward Arnold, London 1979.
  • [9] Gambir M.L., Concrete Technology, 3rd Edition, McGraw-Hill Publishing Companies, New Delhi 2006.
  • [10] Shetty M.S., Concrete Technology, Theory and Practice, First Multicolour Illustrative Revised Edition, S. Chard & Company Ltd, 7361, Ram Nagar, New Delhi 2005.
  • [11] Jackson N., Dhir R.K., Civil Engineering Materials, MacMillan Education Ltd. Hound mills, Basing stroke Hampshire 1988.
  • [12] BS 882: Part 2: 1973. Coarse and fine aggregate from natural sources. BSI, London, UK.
  • [13] BS 882: 1992. Specification for aggregate from natural sources for concrete. BSI, London, UK.
  • [14] Jackson N., Dnir R.K., Civil Engineering Material, Fourth Edition. Addison Wesley Longman’s Limited Edinburgh Gate 1991.
  • [15] Neville A.M., Brooks J.J., Concrete Technology, ELBS with Longman Group Ltd. England 1987.
  • [16] BS 812: Part 103.1: 1985. Method for determination of particle size distribution - Sieve tests. BSI, London, UK.
  • [17] BS 812: Part 2: 1995. Methods of determination of bulk densities of aggregate. BSI, London, UK.
  • [18] BS 812: Part 109: 1990. Methods for determination of moisture content. BSI, London, UK.
  • [19] BS 812: Part 107: 1995. Methods for determination of particle density and water absorption. BSI, London, UK.
  • [20] BS 812: Part 110: 1990. Methods for determination of aggregate crushing value. BSI, London, UK.
  • [21] BS 812: Part 112: 1990. Methods for determination of aggregate impact value. BSI, London, UK.
  • [22] BS 1881: Part 102: 1983. Methods for determination of slump. BSI, London, UK.
  • [23] BS 1881: Part 103: 1983. Methods for determination of compacting factor. BSI, London, UK.
  • [24] BS 1881: Part 108: 1983. Method for making test cubes from fresh concrete. BSI, London, UK.
  • [25] BS 1881: Part 116: 1983. Method of determination of compressive strength of concrete cubes. BSI, London, UK.
  • [26] BS 1881: Part 115: 1983. Specification for compressive test machines for concrete. BSI, London, UK.
  • [27] Neville A.M., Brooks J.J., Concrete Technology. Fourth edition, Second Indian Print. Pearson Education Publisher, New Delhi 2003.
  • [28] Gambir M.L., Concrete Technology, Third Edition, Tata McGraw-Hill Publishing Company 2006.
  • [29] Myer Kutz, Handbook of Materials Selection, John Wiley & Sons, Inc, USA 2002.
  • [30] BS 5328: Part 1: 1997. Concrete: Guide to specify concrete. BSI, London, UK.
  • [31] Okereke P.A., Construction Material for Testing Quality Control, First edition, Crown Publisher Ltd, Oweri, Nigeria 2003.
  • [32] Ricketts J.T., Loftin M. Kent, Merritt F.S., Standard Handbook for Civil Engineers, 5th Edition, McGraw-Hill Companies, Inc. USA 2004.
  • [33] Wikipedia Online Encyclopedia (www.wikipedia.com).
  • [34] American Society for Testing Materials Standards (ASTM) C330-333. Annual Book of ASTM Standards. USA.
  • [35] BS 12:1978. Specifications for cement. BSI, London, UK.
  • [36] BS 1881: Part 1 11: 1983. Method of normal curing of concrete. BSI, London, UK.
  • [37] BS 1881: Part 114: 1983. Methods for determination of density of hardened concrete. BSI, London, UK.
  • [38] BS 8110: Part 1: 1985. Structural use of concrete. Code of Practice for design and construction. BSI, London, UK.
  • [39] BS 3797: 1990. Specification for lightweight aggregates for masonry units and structural concrete. BSI, London, UK.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-353bd6ca-a071-4e7e-967a-6defafd484a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.