PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mössbauer study of a tetrakis (pentafl uorophenyl) porphyrin iron (III) chloride in comparison with the fluorine unsubstituted analogue

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
All-Polish Seminar on Mössbauer Spectroscopy OSSM 2014 (10th ; 15-18.06.2014 ; Wrocław, Poland)
Języki publikacji
EN
Abstrakty
EN
Mössbauer investigations, in association with density functional theory (DFT) calculations, have been conducted for the molecular and electronic structures of iron (III) [tetrakis (pentafl uorophenyl)] porphyrin chloride [(F20TPP)Fe:Cl], as a Fe(III)-tetraphenylporphyrin complex containing chloride axial ligand and substituted hydrogen atoms by fl uorine ones in the four phenyl rings, in comparison with its fl uorine unsubstituted analogue [(TPP)Fe:Cl]. It was found that the parameters of Mössbauer spectra of both complexes are close to one another, and correspond to the high-spin state of Fe(III) ions, but they show the different temperature dependence and the quadrupole doublets in Mössbauer spectra show different asymmetry at low temperatures. Results of DFT calculations are analyzed in the light of catalytic activity of the halogenated complex.
Czasopismo
Rocznik
Strony
57--61
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Institute of Physics, Częstochowa University of Technology, 19 Armii Krajowej Ave., 42-200 Częstochowa, Poland, Tel.: +48 34 325 0177, Fax: +48 34 325 0975
  • Institute of Physics, Jagiellonian University, 4 Reymonta Str., 30-059 Kraków, Poland
autor
  • Institute of Physics, Częstochowa University of Technology, 19 Armii Krajowej Ave., 42-200 Częstochowa, Poland, Tel.: +48 34 325 0177, Fax: +48 34 325 0975
  • Institute of Physics, Częstochowa University of Technology, 19 Armii Krajowej Ave., 42-200 Częstochowa, Poland, Tel.: +48 34 325 0177, Fax: +48 34 325 0975
Bibliografia
  • 1. Sheldon, R. A. (1994). Metalloporphyrins in catalytic oxidations. New York: Marcel Dekker.
  • 2. Meunier, B. (1999). Biomimetic oxidations catalyzed by transition metal complexes. London: Imperial College Press.
  • 3. Gray, H. B., & Winkler, J. R. (2003). Heme protein dynamics: Electron tunneling and redox triggered folding. In K. M. Kadish, K. M. Smith & G. Guilard (Eds.), The porphyrin handbook (Vol. 11, pp. 51–75).Amsterdam: Academic Press.
  • 4. Malinowski, T. (2000). Porphyrin-based electrochemical sensors. In K. M. Kadish, K. M. Smith & G. Guilard (Eds.), The porphyrin handbook (Vol. 6, pp. 231–256). San Diego: Academic Press.
  • 5. Dziedzic-Kocurek, K., Okła, D., & Stanek, J. (2013). Inter- and intramolecular dynamics of iron porphyrins. Nukleonika, 58, 7–11.
  • 6. Hu, Ch., Noll, B. C., Schultz, C. E., & Scheidt, W. R. (2007). Four-coordinate iron (II) porphyrinates: Electronic confi guration change by intermolecular interaction. Inorg. Chem., 46, 619–621. DOI: 10.1021/ic0620182.
  • 7. Hoard, J. L., Cohen, G. H., & Glick, M. D. (1967). The stereochemistry of the coordination group in an iron (III) derivative of tetraphenylporphine. J. Am. Chem.Soc., 89, 1992–1996. DOI: 10.1021/ja00985a004.
  • 8. Lang, G., Spartalian, K., Reed, C. A., & Collman, J. P. (1978). Mössbauer effect study of the magnetic properties of S=1 ferrous tetraphenylporphyrin. J. Chem. Phys., 69, 5424–5427. DOI: 10.1063/1.436532.
  • 9. Wei, L., She, Y., Yu, Y., Yao, X., & Zhang, S. (2012). Substituent effects on geometric and electronic properties of iron tetraphenylporphyrin: A DFT investigation. J. Mol. Model., 18, 2483–2491. DOI: 10.1007/s00894-011-1279-x.
  • 10. Asghari-Khiavi, M., & Safi nejad, F. (2010). Theoretical studies on metal porphyrin halides: Geometrical parameters and nonlinear optical responses. J. Mol. Model., 16, 499–503. DOI: 10.1007/s00894-009-0556-4.
  • 11. Liu, N., Jiang, G. F., Guo, C. C., & Tan, Z. (2009). Quantitative structure-activity relationship studies on ironporphyrin–catalyzed cyclohexane oxidation with PhIO. J. Mol. Catal. A-Chem., 304, 40–46. DOI:10.1016/j.molcata.2009.01.021.
  • 12. Lu, Q. Z., Yu, R. Q., & Shen, G. L. (2003). The structure, catalytic activity and reaction mechanism modeling for halogenated iron-tetraphenylporphyrincomplexes. J. Mol. Catal. A-Chem., 198, 9–22. DOI:10.1016/S1381-1169(02)00726-4.
  • 13. Stephenson, N. A., & Bell, A. T. (2006). Effects of methanol on the therodynamics of iron(III) [tetrakis (pentafl uorophenyl)] porphyrin chloride dissociation and the creation of catalytically active species for the epoxidation of cyclooctene. Inorg. Chem., 45, 5591–5599. DOI: 10.1021/ic0521067.
  • 14. Stephenson, N. A., & Bell, A. T. (2006). A study of the mechanism and kinetics of cyclooctene epoxidation catalyzed by iron (III) tetrakispentafl uorophenyl porphyrin. J. Am. Chem. Soc., 127, 8635–8643. DOI:10.1021/ja043380n.
  • 15. Cunningham, I. D., Basaleh, A., & Gazzaz, H. (2012).Pre-steady state reactivity of 5,10,15,20-tetrakis (pentafl uorophenyl)-21H, 23H-porphyrin iron (III) chloride with hydrogen peroxide. Dalton Trans., 41, 9158–9160. DOI: 10.1039/c2dt31107k.
  • 16. Kaczmarzyk, T., Jackowski, T., & Dziliński, K. (2007). Spectroscopic characteristics of FeI-phthalocyanine. Nukleonika, 52, 99–103.
  • 17. Velde, G. Te., Bickelhaupt, F. M., van Gisbergen, S. J. A., Fonseca Guerra, C., Baerends, E. J., Snijders, J. G., & Ziegler, T. (2001). Chemistry with ADF. J. Comput. Chem., 22, 931. DOI: 10.1002/jcc.1056.
  • 18. van Lenthe, E., & Baerends, E. J. (2003). Optimized slater-type basis sets for the elements 1-118. J. Comput. Chem., 24, 1142–1156. DOI: 10.1002/jcc.10255.
  • 19. Scheidt, W. R., & Finnegan, M. G. (1989). Structure of monoclinic chloro (meso-tetraphenylporphyrinato) iron(III). Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 45, 1214–1216. DOI: 10.S0108270189000715.
  • 20. Scheidt, W. R., & Lee, Y. J. (1987). Recent advances in the stereochemistry of metallotetrapyrroles. Struct. Bond., 64, 1–70. DOI: 10.1007/BFb0036789.
  • 21. Lu, Q. Z., Lu, Y., & Wang, J. J. (2006). DFT study of iron tetraphenylporphyrin chloride and iron pentafl uorophenylporphyrinchloride. Chinese J. Chem. Phys., 19, 227–232. DOI: 10.1360/cjcp2006.19(3).227.6.
  • 22. Debrunner, P. G. (1989). Mössbauer spectroscopy of iron porphyrins. In A. B. P. Lever & H. B. Gray (Eds.), Iron porphyrins. (Part III, pp. 140–234). New York: VCH Publishers.
  • 23. Shenoy, G. K., Wagner, F. E., & Kalvius, G. M. (1978). The measurement of the isomer shift. In G. K. Shenoy & F. E. Wagner (Eds.), Mössbauer isomer shifts (pp. 49–110). Amsterdam: North-Holland Publishing Co.
  • 24. Lyons, J. E., Ellis, P. E., & Myers, H. K. (1995). Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen. J. Catal., 155, 59–73. DOI: 10.1006/jcat.1995.1188.
  • 25. Zhan, C. G., Nichols, J. A., & Dixon, D. A. (2003). Ionization potential, electron affi nity, electronegativity, hardness and electron excitation energy: Molecular properties from density functional theory orbital energy. J. Phys. Chem. A, 107, 4184–4195. DOI:10.1021/jp0225774.
  • 26. Ernst, J., Subramanian, J., & Fuhrhop, J. H. (1977). Magnetic interactions in iron (III) porphyrin chlorides. Z. Naturforsch., 32a, 1129–1136.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35396bcc-da00-47e2-96f7-c108997be59a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.