PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of shear depth on seismic performance of shear wall reinforced with BFRP bars: mesoscale modelings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The seismic performances of 28 geometrically similar concrete shear walls reinforced with basalt fiber-reinforced polymer (BFRP) bars were simulated using a mesoscale modeling approach. In the modeling, concrete heterogeneities were explicitly described, and the interaction between BFRP bars and surrounding concretes was also considered. The influences of shear depth, shear span ratio and vertical reinforcement ratio on the failure of shear walls were investigated. The simulation results indicated that with the increase of shear depth, the failure modes were basically the similar, while the nominal shear strength decreased significantly, namely, the presence of size effect was demonstrated. The shear wall would exhibit different failure modes as the shear span ratio varies. Moreover, it was found that the vertical BFRP bar presented an ignorable influence on the failure mode, while the increase of vertical reinforcement ratio would obviously improve the shear strength of BFRP-RC shear wall. Finally, the present simulated shear strengths were compared with some available size effect laws and some codes.
Rocznik
Strony
art. no. e4, 2023
Opis fizyczny
Bibliogr. 72 poz., rys., tab., wykr.
Twórcy
autor
  • The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
autor
  • The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
autor
  • The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
Bibliografia
  • 1. Wei F, Chen H, Xie Y. Experimental study on seismic behavior of reinforced concrete shear walls with low shear span ratio. J Build Eng. 2022;45: 103602.
  • 2. Rasoolinejad M, Bazant ZP. Size effect of squat shear walls extrapolated by microplane model M7. ACI Struct J. 2019;116(3):75-84.
  • 3. Barda F, Hanson JM, Corley GW. Shear strength of low-rise walls with boundary elements. ACI Spec Publ. 1977;53(8):149-202.
  • 4. Wallace JW, Moehle JP. Ductility and detailing requirements of bearing wall buildings. ASCE J Struct Eng. 1992;118(6):1625-44.
  • 5. Sittipunt C, Wood SL, Lukkunaprasit P, Pattararattanakul P. Cyclic behavior of reinforced concrete structural walls with diagonal web reinforcement. ACI Struct J. 2001;98(4):554-62.
  • 6. Kuang JS, Ho YB. Seismic behavior and ductility of squat reinforced concrete shear walls with nonseismic detailing. ACI Struct J. 2008;105(2):225-31.
  • 7. Zhang H, Jiang X. Experimental study of RC shear wall with different influence of the aspect ratio on the aspect ratio in seismic damage performance. China Civ Eng J. 2018;51:122-6, 32 (in Chinese).
  • 8. Tegos I, Salonikios TN, Kappos AJ. Cyclic load behavior of low-slenderness reinforced concrete walls: failure modes, strength and deformation analysis, and design implications. ACI Struct J. 2000;97:132-41.
  • 9. Carrillo J, Alcocer SM. Acceptance limits for performance-based seismic design of RC walls for low-rise housing. Earthq Eng Struct Dyn. 2012;41:2273-88.
  • 10. Baek JW, Park HG, Shin HM, Yim SJ. Cyclic loading tests for reinforced concrete walls (aspect ratio 2.0) with grade 550 MPa (80 ksi) shear reinforcing bars. ACI Struct J. 2017;114(3):673-86.
  • 11. Baek JW, Park HG, Lee JH, Bang CJ. Cyclic loading test for walls of aspect ratio 1.0 and 0.5 with grade 550 MPa shear reinforcing bars. ACI Struct J. 2017;114(4):969-82.
  • 12. Cardenas AE, Russell HG, Corley WG. Strength of low-rise structural walls. ACI Spec Publ. 1973;63:221-41.
  • 13. Hidalgo PA, Ledezma CA, Jordan RM. Seismic behavior of squat reinforced concrete shear walls. Earthq Spectr. 2002;18(2):287-308.
  • 14. ACI (American Concrete Institute). Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars. ACI 440.1R-15, Farmington Hills, MI; 2015.
  • 15. Rahman H, Donchev T, Petkova T, Jurgelans D, Hopartean G. Behaviour of concrete shear wall with bfrp reinforcement for concrete structures. In: Proceedings of FRPRCS-14 Conference, Belfast, UK; 2019.
  • 16. Arafa A, Farghaly AS, Benmokrane B. Effect of web reinforcement on the seismic response of concrete squat walls reinforced with glass-FRP bars. Eng Struct. 2018;174:712-23.
  • 17. Arafa A, Farghaly A, Benmokrane B. Experimental behavior of GFRP-reinforced concrete squat walls subjected to simulated earthquake load. ASCE J Compos Constr. 2018;22(2):04018003.
  • 18. Arafa A, Farghaly A, Benmokrane B. Prediction of flexural and shear strength of concrete squat walls reinforced with GFRP bars. ASCE J Compos Constr. 2018;22(4):06018001.
  • 19. Arafa A, Farghaly A, Benmokrane B. Evaluation of flexural and shear stiffness of concrete squat walls reinforced 2018;115(1):211-21.
  • 20. Zhang Q, Xiao J, Liao Q, Duan Z. Structural behavior of seawater sea-sand concrete shear wall reinforced with GFRP bars. Eng Struct. 2019;189:458-70.
  • 21. Mohamed N, Farghaly AS, Benmokrane B. Aspects of deformability of concrete shear walls reinforced with glass fiber-reinforced bars. ASCE J Compos Constr. 2015;19(5):06014001.
  • 22. Mohamed N, Farghaly AS, Benmokrane B, Neale KW. Experimental investigation of concrete shear walls reinforced with glass fiber-reinforced bars under lateral cyclic loading. ASCE J Compos Constr. 2014;18(3):A4014001.
  • 23. Mohamed N, Farghaly AS, Benmokrane B, Neale KW. Flexure and shear deformation of GFRP-reinforced shear walls. ASCE J Compos Constr. 2014;18(2):04013044.
  • 24. Huang Z, Shen J, Lin H, Song X, Yao Y. Shear behavior of concrete shear walls with CFRP grids under lateral cyclic loading. Eng Struct. 2020;211: 110422.
  • 25. Zhao Q, Zhao J, Dang JT, Chen JW, Shen FQ. Experimental investigation of shear walls using carbon fiber reinforced polymer bars under cyclic lateral loading. Eng Struct. 2019;191:82-91.
  • 26. Zhao J, Shen F, Si C, Sun Y, Yin L. Experimental investigation on seismic resistance of RC shear walls with CFRP bars in boundary elements. Int J Concr Struct M. 2020;14(1):1-20.
  • 27. Rahman H, Donchev T, Petkova D. Comparing the behaviour of the FRP and steel reinforced shear walls under cyclic seismic loading in aspect of the energy dissipation. IJCEE. 2020;14(3):84-9.
  • 28. Miao L, Jin L, Li D, Du X, Zhang B. Effect of shear-span ratio and vertical reinforcement ratio on the failure of geometrical-similar RC shear walls. Eng Fail Anal. 2022;139:106407.
  • 29. Song W, Dyke S, Harmon T. Application of nonlinear model updating for a reinforced concrete shear wall. ASCE J Eng Mech. 2013;139(5):635-49.
  • 30. Jin L, Ding ZX, Li D, Du XL. Experimental and numerical investigations on the size effect of moderate high-strength reinforced concrete columns under small-eccentric compression. Int J Damage Mech. 2018;27(5):657-85.
  • 31. Pan J, Zhong W, Wang J, Zhang C. Size effect on dynamic splitting tensile strength of concrete: mesoscale modeling. Cem Concr Compos. 2022;128: 104435.
  • 32. Van Mier JGM, Van Vliet MRA. Influence of microstructure of concrete on size/scale effects in tensile fracture. Eng Fract Mech. 2003;70(16):2281-306.
  • 33. Zhong W, Pan J, Wang J, Zhang C. Size effect in dynamic splitting tensile strength of concrete: experimental investigation. Constr Build Mater. 2021;270: 121449.
  • 34. Wriggers P, Moftah SO. Mesoscale models for concrete: homogenisation and damage behaviour. Finite Elem Anal Des. 2006;42:623-36.
  • 35. Schlangen E, van Mier JGM. Simple lattice model for numerical simulation of fracture of concrete materials and structures. Mater Struct. 1992;25:534-42.
  • 36. Thilakarathna PSM, Baduge KSK, Mendis P, Vimonsatit V, Lee H. Mesoscale modelling of concrete-a review of geometry generation, placing algorithms, constitutive relations and applications. Eng Fract Mech. 2020;231: 106974.
  • 37. Wu Z, Zhang J, Fang Q, Yu H, Ma H. Mesoscopic modelling of concrete material under static and dynamic loadings: a review. Constr Build Mater. 2021;278(10): 122419.
  • 38. Wang X, Liu L, Zhou H, Song T, Qiao Q, Zhang H. Improving the compressive performance of foam concrete with ceramsite: experimental and meso-scale numerical investigation. Mater Des. 2021;208: 109938.
  • 39. Lubliner J, Oliver J, Oller S, Onate E. A plastic-damage model for concrete. Int J Solids Struct. 1989;25(3):299-326.
  • 40. Lee J, Fenves GL. Plastic-damage model for cyclic loading of concrete structures. ASCE J Eng Mech. 1998;124(8):892-900.
  • 41. Ali O, Abbas A, Khalil E, Madkour H. Numerical investigation of FRP-confined short square RC columns. Constr Build Mater. 2021;275: 122141.
  • 42. Fang C, Ali MSM, Sheikh AH. Experimental and numerical investigations on concrete filled carbon FRP tube (CFRP-CFFT) columns manufactured with ultra-high-performance fibre reinforced concrete. Compos Struct. 2020;239: 111982.
  • 43. Mahmud GH, Yang Z, Hassan AMT. Experimental and numerical studies of size effects of ultra high performance steel fibre reinforced concrete (UHPFRC) beams. Constr Build Mater. 2013;48:1027-34.
  • 44. Jumaa GB, Yousif AR. Numerical modeling of size effect in shear strength of FRP-reinforced concrete beams. Structures. 2019;20:237-54.
  • 45. Othman H, Marzouk H. Finite-element analysis of reinforced concrete plates subjected to repeated impact loads. J Struct Eng. 2017;143(9):04017120.
  • 46. Genikomsou AS, Polak MA. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Eng struct. 2015;98:38-48.
  • 47. Huang YJ, Yang ZJ, Chen XW, Liu GH. Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images. Int J Impact Eng. 2016;97:102-15.
  • 48. Cicekli U, Voyiadjis G, Al-Rub A. A plasticity and anisotropic damage model for plain concrete. Int J Plast. 2007;23:1874-900.
  • 49. Zhang YX, Lin X. Nonlinear finite element analyses of steel/FRP-reinforced concrete beams by using a novel composite beam element. Adv Struct Eng. 2013;16(2):339-52.
  • 50. CSA (Canadian Standards Association). Design and construction of building components with fiber-reinforced polymers. CSA S806, Mississauga, ON, Canada; 2012.
  • 51. Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete. J Compos Constr. 1997;1(2):40-51.
  • 52. Lin X, Zhang YX. Novel composite beam element with bond-slip for nonlinear finite-element analyses of steel/FRP-reinforced concrete beams. J Struct Eng. 2013;139(12):06013003.
  • 53. Looi DTW, Su RKL, Cheng B, Tsang HH. Effects of axial load on seismic performance of reinforced concrete walls with short shear span. Eng Struct. 2017;151:312-26.
  • 54. Ren C, Xiao C, Xu P, Chen S. Low-cyclic repeated shear test on tension-compression variable axial force of reinforced concrete shear wall. China Civ Eng J. 2018;051(005):16-25 (in Chinese).
  • 55. Yılmaz O, Molinari J. A mesoscale fracture model for concrete. Cem Concr Res. 2017;97:84-94.
  • 56. Naderi S, Tu W, Zhang M. Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates. Cem Concr Res. 2021;140: 106317.
  • 57. Chen H, Xu B, Mo YL, Zhou T. Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings. Constr Build Mater. 2018;178:418-31.
  • 58. Liao FY, Han LH, Tao Z. Performance of reinforced concrete shear walls with steel reinforced concrete boundary columns. Eng Struct. 2012;44:186-209.
  • 59. GB50010-2010. Code for design of concrete structures. Beijing: China Architecture & Building Press; 2010. (in Chinese).
  • 60. Bi Q, Wang H. Bond strength of BFRP bars to basalt fiber reinforced high-strength concrete. Advances in FRP composites in civil engineering. Berlin: Springer; 2011. p. 576-80.
  • 61. Szmigiera ED, Protchenko K, Urbański M, Garbacz A. Mechanical properties of hybrid FRP bars and nano-hybrid FRP bars. Arch Civ Eng. 2019;65(1):97-110.
  • 62. Kheyroddin A, Rouhi S, Dabiri H. An experimental study on the influence of incorporating lap or forging (GPW) splices on the cyclic performance of RC columns. Eng Struct. 2021;241: 112434.
  • 63. Akhlaghi A, Mostofinejad D. Experimental and analytical assessment of different anchorage systems used for CFRP flexurally retrofitted exterior RC beam-column connections. Structures. 2020;28:881-93.
  • 64. Oesterle RG, Aristizabal-Ochoa JD, Fiorato AE, Russell HG, Corley WG. Earthquake resistant structural walls-tests of isolated walls-phase II. Construction Technology Laboratories, Portland Cement Association; 1979.
  • 65. Bazant ZP, Planas J. Fracture and size effect in concrete and other quasibrittle materials. Boca Raton: CRC Press LCC; 1998.
  • 66. Bazant ZP. Size effect in blunt fracture: concrete, rock, metal. ASCE J Eng Mech. 1984;110:518-35.
  • 67. Carpinteri A, Chiaia B, Ferro G. Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder. Mater Struct. 1995;28:311-7.
  • 68. Kotsovos MD, Pavlovic MN. Size effects in structural concrete: a numerical experiment. Comput Struct. 1997;64:285-95.
  • 69. Karihaloo BL, Abdalla HM, Xiao QZ. Size effect in concrete beams. Eng Fract Mech. 2003;70:979-93.
  • 70. Hu X, Duan K. Size effect and quasi-brittle fracture: the role of FPZ”. Int J Fract. 2008;154(1-2):3-14.
  • 71. Bažant ZP, Kim JK. Size effect in shear failure of longitudinally reinforced beams. ACI J. 1984;81(5):456-68.
  • 72. Kim JK. Size effect in concrete specimens with dissimilar initial crack. Mag Concr Res. 1990;42(153):233-8.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35391ae7-2c86-458e-8ca8-5a7aeffea19e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.