PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grafenowe elektrody transparentne dla drukowanych ogniw fotowoltaicznych

Identyfikatory
Warianty tytułu
EN
Transparent graphene electrodes for printed photovoltaic
Języki publikacji
PL
Abstrakty
PL
Artykuł przedstawia wynik prac nad otrzymaniem przezroczystych elektrod drukowanych dla ogniw fotowoltaicznych. Wytworzono kompozycje polimerowe zawierające nanopłatki grafenowe jako alternatywę dla naparowywanych warstw ITO czy FTO, czy elektrod organicznych PEDOT: PSS. Wymienione materiały posiadają szereg wad, jak wysoka cena, niestabilność chemiczna i niska wytrzymałość mechaniczna. Otrzymane kompozycje grafenowe przeznaczone są do taniej i łatwej do wdrożenia technik sitodruku. Badane warstwy grafenowe okazały się mieć bardzo dobrą wytrzymałość mechaniczną i względnie wysoką transparentność. Wysoka wytrzymałość mechaniczna pozwala zastosować je w układach elastycznych. Odporność warstw ITO na podłożu PET przebadanych w ten sposób, jest wyraźnie gorsza.
EN
Results of obtaining printed transparent electrodes for photovoltaic applications are presented in the paper. Polymer compositions containing graphene nanoplatelets were fabricated, as alternative for sputtered ITO and FTO or organic PEDO:PSS electrodes. Mentioned materials exhibit several disadvantages such as high price, chemical instability and low mechanical endurance. Synthesized by authors graphene-polymer compositions are targeted for low cost and easy applicable screen printing technique. Elaborated layers exhibit high mechanical strength with sufficient optical transparency. High mechanical strength allows to apply such layers in elastic electronics. Mechanical endurance of ITO an PET evaluated the same way is significantly lower comparing to graphene electrodes.
Rocznik
Strony
35--37
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
autor
  • Politechnika Warszawska, Instytut Metrologii i Inżynierii Biomedycznej, Wydział Mechatroniki
autor
  • Politechnika Warszawska, Instytut Metrologii i Inżynierii Biomedycznej, Wydział Mechatroniki
  • Politechnika Warszawska, Instytut Metrologii i Inżynierii Biomedycznej, Wydział Mechatroniki
  • Politechnika Warszawska, Instytut Metrologii i Inżynierii Biomedycznej, Wydział Mechatroniki
  • Instutyt Technologii Materiałów Elektronicznych, Warszawa
Bibliografia
  • [1] Hilderman R., Signs of climate change, Mother Earth News, p. 60, 2011.
  • [2] Perrow C., Fukushima and the inevitability of accidents, Bulletin of the Atomic Scientists, vol. 67, pp. 44-52, 2011.
  • [3] Innocent J. E. Z., N. Jari, N. Matti, Effects of a hydropower plant on Coleopteran diversity and abundance in the Udzungwa Mountains, Tanzania, Biodiversity & Conservation, vol. 13, pp. 1453-1464, 2004.
  • [4] de Lucas M., M. Ferrer, M. J. Bechard, and A. R. Muñoz, Griffon vulture mortality at wind farms in southern Spain: Distribution of fatalities and active mitigation measures, Biological Conservation, vol. 147, pp. 184-189, 2012.
  • [5] Bach U. L. D., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion, Nature, vol. 395, 583, 1998.
  • [6] Schulze К., В. Maennig, К. Leo, Y. Tomita, С. May, J. Hupkes, E. Brier, E. Reinold, and P. Bauerle, Organic solar cells on indium tin oxide and aluminum doped zinc oxide anodes, Applied Physics Letters, vol. 91, p. 073521, 2007.
  • [7] Fehse К., K. Walzer, K. Leo, W. Lövenich, and A. Elschner, Highly Conductive Polymer Anodes as Replacements for Inorganic Materials in High-Efficiency Organic Light-Emitting Diodes, Advanced Materials, vol. 19, pp. 441-444, 2007.
  • [8] Carroll D. L., R. Czerw, S. Webster, Polymer-nanotube composites for transparent, conducting thin films, Synthetic Metals, vol. 155, iss. 3, pp. 694-697, 2005.
  • [9] Jakubowska M., M Słoma, A. Młożniak, Printed transparent electrodes containing carbon nanotubes for elastic circuits applications with enhanced electrical durability under severe conditions, Materials Science and Engineering: B, vol 176, iss 4, pp. 358-362, 2011.
  • [10] Sibiński M., K. Znajdek, M. Słoma, B. Guzowski, Carbon nanotube transparent conductive layers for solar cells application, Optica Applicata, vol. XLI, pp. 375-381, 2011.
  • [11] Sibiński M., K. Znajdek, S. Walczak, M. Słoma, M., A. Cenian, Comparison of ZnO:AI, ITO and carbon nanotube transparent conductive layers in flexible solar cells applications, Materials Science and Engineering: B, vol 177, iss 15, pp. 1292-1298, 2012.
  • [12] Słoma M., M. Jakubowska, M. Cież, Printed electroluminescent structures fabricated with metal-free compositions filled with carbon and ceramics nanomaterials, IEEE Conference Publications 34th International Spring Seminar on Electronics Technology ISSE 2011, pp. 558-562, 2011.
  • [13] Ptak J., M. Cież, К. Zaraska, M. Słoma, M. Jakubowska, A comparison of electrooptical characteristics of the electroluminescent lamps with transparent electrodes based on ITO and CNT, Large-area Organic and Printed Electronics Convention, Frankfurt, 2009, pp. 1-4.
  • [14] Novoselov K. S., A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol. 438, pp. 197-200, 2005.
  • [15] Zhang Y., Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, vol. 438, pp. 201-204, 2005.
  • [16] Kim K. S., Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and В. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, vol. 457, pp. 706-710, 2009.
  • [17] Changgu L., W. Xiaoding, J. W. Kysar, and J. Honel, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol. 321, pp. 385-388, 2008.
  • [18] Supinda W., A. D. Dmitriy, S. Sasha, P. Richard, J. Inhwa, H. B. D. Geoffrey, E. Guennadi, W. Shang-En, C. Shu-Fang, L. Chuan-Pu, T. N. SonBinh, and S. R. Rodney, Graphene-Silica Composite Thin Films as Transparent Conductors, Nano Letters, vol. 7, pp. 1888-1892, 2007.
  • [19] Nair R. R., P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science (New York, N.Y.), vol. 320, pp. 1308-1308, 2008.
  • [20] Wang X., L. Zhi, and K. Mullen, Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells, Nano Letters, vol. 8, pp. 323-327, 2008/01/01 2007.
  • [21] Xiaolin L., Z. Guangyu, B. Xuedong, S. Xiaoming, W. Xinran, W. Enge, and D. Hongjie, Highly conducting graphene sheets and Langmuir-Blodgett films, Nature Nanotechnology, vol. 3, pp. 538-542, 2008.
  • [22] Gomez De Arco L., Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano, vol. 4, pp. 2865-2873, 2010.
  • [23] Choi Y.-Y., S. J. Kang, H.-K. Kim, W. M. Choi, and S.-I. Na, Multilayer graphene films as transparent electrodes for organic photovoltaic devices, Solar Energy Materials & Solar Cells, vol. 96, pp. 281-285, 2012.
  • [24] Shin K.-Y., J.-Y. Hong, and J. Jang, Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing, Chemical Communications, vol. 47, pp. 8527-8529, 2011.
  • [25] Torrisi F., T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, Inkjet-printed graphene electronics, ACS Nano, vol. 6, pp. 2992-3006, 2012.
  • [26] Ping J., Y. Wang, K. Fan, J. Wu, and Y. Ying, Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application, Biosensors & Bioelectronics, vol. 28, pp. 204-209, 2011.
  • [27] Zhang L., Y. Li, L. Zhang, D.-W. Li, D. Karpuzov, and Y.-T. Long, Electrocatalytic Oxidation of NADH on Graphene Oxide and Reduced Graphene Oxide Modified Screen-Printed Electrode, International Journal of Electrochemical Science, vol. 6, pp. 819-829, Mar 2011.
  • [28] Qian M., T. Feng, H. Ding, L. Lin, H. Li, Y. Chen, and Z. Sun, Electron field emission from screen-printed graphene films, Nanotechnology, vol. 20, Oct 21 2009.
  • [29] Zhang D. W., X. D. Li, S. Chen, H. B. Li, Z. Sun, X. J. Yin, and S. M. Huang, Graphene Nanosheet Counter-Electrodes for Dye-Sensitized Solar Cells, 3rd International Nanoelectronics Conference (INEC), 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-353811cc-ccf2-48c7-877f-e97279f2092e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.