PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cyclic oxidation resistance of Co–9Al–9W new cobalt-based superalloy

Identyfikatory
Warianty tytułu
PL
Odporność na utlenianie cykliczne nowego nadstopu kobaltu typu Co–9Al–9W
Języki publikacji
EN
Abstrakty
EN
Cobalt-based superalloys are class of new heat-resistant materials for components of turbine engines. The γ/γʹ phase microstructure similar to nickel-based analogue, provide excellent creep resistance as well as resistance to corrosion and oxidation. Superior high temperature resistance drives intensive development of Co-based superalloys. The aim of paper is assessment of high temperature oxidation behaviour of Co–9Al–9W alloy in as-cast state. The cyclic oxidation performance of Co–9Al–9W alloy was studied at temperature 800°C and 900°C. The cyclic oxidation test was carried out under laboratory air atmosphere with time of exposure 25 hours and multiplicity of it. The scale morphology after cyclic oxidation test was investigated. The evaluation of scale concerned macrostructure, microstructure, chemical and phase composition of surface. Surface of tested alloys after oxidation was characterized using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and light microscopy (LM). Obtained data revealed that Co–9Al–9W alloy showed acceptable resistance to cyclic test at temperature 800°C. The oxide scale at this variant showed mainly Co oxides as an dominant phase. At higher temperature – 900°C the strong effect of spallation of scale was observed as results of CoWO4 complex oxide formation.
PL
Celem pracy była charakterystyka odporności na utlenianie nowego typu stopów na bazie kobaltu umacnianych fazą Co3(Al, W). Ocenie poddano stop Co–9Al–9W (% at.) w stanie po odlaniu i homogenizacji. Wykonano próby odporności na utlenianie cykliczne w cyklach 25-godzinnych w atmosferze powietrza. Zakres prezentowanych badań obejmował pomiary masy próbek po kolejnych cyklach, ocenę stanu powierzchni z uwzględnieniem procesów jej odpadania, jak również charakterystykę składu chemicznego i fazowego powstałej zgorzeliny oraz jej budowę morfologiczną.
Rocznik
Strony
39--45
Opis fizyczny
Bibliogr. 16 poz., fig., tab.
Twórcy
  • Silesian University of Technology, Institute of Materials Engineering, Katowice
  • Silesian University of Technology, Institute of Materials Engineering, Katowice
autor
  • Silesian University of Technology, Institute of Materials Engineering, Katowice
  • Silesian University of Technology, Institute of Materials Engineering, Katowice
Bibliografia
  • [1] Ruffles P. C.: Aero engines of the future. The Aeronautical Journal 107 (2003) 307÷321.
  • [2] Eliaz N., Shemesh G., Latanision R. M.: Hot corrosion in gas turbine components. Engineering Failure Analysis 9 (2002) 31÷41.
  • [3] Bourhis Y., John C. St.: Na2SO4 and NaCl-Induced hot corrosion of six nickel-base superalloys. Oxidation of Metals 9 (1975) 507÷528.
  • [4] Gurrappa I.: Hot corrosion behaviour of CM 247 LC alloy in Na2SO4 and NaCl environments. Oxidation of Metals 51 (1999) 353÷382.
  • [5] McCreath C. G.: Environmental factors that determine hot corrosion in marine gas turbine rigs and engines. Corrosion Science 23 (1983) 1017÷1023.
  • [6] Coutsouradis D., Davin A., Lamberigts M.: Cobalt-based superalloys for applications in gas turbines. Materials Science and Engineering A 88 (1987) 11÷19.
  • [7] Douglass D. L., Bhide V. S., Vineberg E.: The corrosion of some superalloys in contact with coal chars in coal gasifier atmospheres. Oxidation of Metals 16 (1981) 29÷79.
  • [8] Eliaz N., Shemesh G., Latanision R. M.: Hot corrosion in gas turbine Components. Engineering Failure Analysis 9 (2002) 31÷43.
  • [9] Kang S.-G., Kobayashi T.: Mechanical property of single phase Co–Ni– Cr–Mo based superalloy produced by cold working and recrystallization heat treatment. Materials Science Forum 449–452 (2004) 573÷576.
  • [10] Jiang W. H., Yao X. D., Guan H. R., Hu Z. Q.: Secondary M6C precipitation in cobalt-base superalloy. Journal of Materials Science Letters 8 (1999) 303÷305.
  • [11] Jiang W. H., Yao X. D., Guan H. R., Hu Z. Q.: Carbide behavior during high-temperature low cycle fatigue in cobalt-base superalloy. Journal of Materials Science 4 (1999) 2859÷2864.
  • [12] Sato J., Omori T., Oikawa K., Ohnuma I., Kainuma R., Ishida K.: Cobaltbase high-temperature alloys. Science 312 (2006) 90÷91.
  • [13] Titus M., Suzuki A., Pollock T. M.: Creep and directional coarsening in single crystals of new γ–γ′ cobalt-base alloys. Scripta Materialia 66 (2012) 574÷577.
  • [14] Tanaka K., Ooshima M., Tsuno N., Sato A., Inui H.: Creep deformation of single crystals of new Co–Al–W-based alloys with fcc/L12 two-phase microstructures. Philosophical Magazine 92 (2012) 4011÷4027.
  • [15] Titus M. S., Eggeler Y. M., Suzuki A., Pollock T. M.: Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys. Acta Materialia 82 (2015) 530÷539.
  • [16] Yan H. Y., Vorontsov V. A., Coakley J., Jones N. G., Stone H. J., Dye D.: Quaternary alloying effects and the prospects for a new generation of Co-base superalloys. In: Superalloys 2002, E. S. Huron, R.C. Reed, M. C. Hardy, M. J. Mills, R. E. Montero, P. D. Portella, J. Telesman, eds. The Minerals, Metals & Materials Society, Warrendale PA (2012) 705÷714.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35366c92-6bdd-43f1-a114-18559aecc264
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.