PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Limit Theorems for the Hierarchy of Freeness

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The central limit theorem, the invariance principle and the Poisson limit theorem for the hierarchy of freeness are studied. We show that for given m ϵ N the limit laws can be expressed in terms of non-crossing partitions of depth smaller than or equal to m. For A = C[x], we solve the associated moment problems and find explicitly the discrete limit measures.
Rocznik
Strony
23--41
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Institut de Recherche Mathématique Avancée, Université Louis Pasteur, Rue René Descartes, F-67084 Strasbourg Cedex, France
  • Hugo Steinhaus Center for Stochastic Methods, Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] M. Bożejko, M. Leinert and R. Speicher, Convolution and limit theorems for conditionally free random variables, Pacific J. Math. 175, No. 2 (1996), pp. 357-388.
  • [2] U. Franz, R. Lenczewski and M. Schürmann, The GNS construction for the hierarchy of freeness, Preprint No. 9/98, Technical University of Wrocław, 1998.
  • [3] R. Lenczewski, Unification of independence in quantum probability, Inf. Dim. Anal., Quant. Probab. & Rel. Top., Vol. 1, No. 3 (1998), pp. 383-405.
  • [4] - A noncommutative limit theorem for homogeneous correlations, Studia Math. 129 (1998), pp. 225-252.
  • [5] H. Maassen, Addition of freely independent random variables, J. Funct. Anal. 106 (1992), pp. 409-438.
  • [6] A. Nica and R. Speicher (with an appendix by D. Voiculescu), On the multiplication of free N-tuples of noncommutative random variables, Amer. J. Math. 118 (1996), pp. 799-837.
  • [7] M. Schürmann, Non-commutative probability on algebraic structures, in; Probability Measures on Groups and Related Structures, Vol. XI (Oberwolfach, 1994), World Scientific, River Edge, NJ, 1995, pp. 332-356.
  • [8] – Direct sums of tensor products and non-commutative independence, J. Funct. Anal. 133 (1995), pp. 1-9.
  • [9] R. Speicher, A new example of "independence" and "white noise", Probab. Theory Related Fields 84 (1990), pp. 141-159.
  • [10] - and W. von Waldenfels, A general central limit theorem and invariance principle, in: Quantum Probability and Related Topics, Vol. IX, World Scientific, 1994, pp. 371-387.
  • [11] D. V. Voiculescu, Symmetries of some reduced free product φ*-algebras, in: Operator Algebras and Their Connections with Topology and Ergodic Theory, Lecture Notes in Math. 1132, Springer, Berlin 1985, pp. 556-588.
  • [12] - Addition of certain non-commuting random variables, J. Funct. Anal. 66 (1986), pp. 323-346.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35351e44-f874-4f48-9eb5-54e406aad786
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.