PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetic field effects on surfactants adsorption on the solid surface as regards of its wettability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The static magnetic field MF (0.44 T) effects on the adsorption of three surfactants: cationic bromide (DTAB) and hexadecyltrimethylammonium bromide (CTAB), and anionic sodium dodecylsulfate (SDS) from their 10-3 M solutions were studied on bare and low-temperature air plasma treated glass plates. The surface properties of the adsorbed surfactants layers were determined via the water advancing and receding contact angles measurements and then calculation of the apparent surface free energy. An optical profilometer was used to determine the structure and topography of the adsorbed layers. The DTAB and SDS concentrations were below their critical micelle concentration and that of CTAB very close to its cmc. The results showed that in the case of DTAB solution (much below its cmc) a small decrease in the contact angle appeared while in CTAB (close to its cmc) an increase in the contact angle value was observed if adsorbed in the MF presence. Quite good reproducibility of the contact angle values was obtained. This was not the case for the SDS solution where the contact angle values were scattered. The reason was that the anionic surfactant did not adsorb homogeneously on the negatively charged glass surface. The contact angles and the calculated values of the work of water spreading clearly show that MF influences the structure of the surfactant adsorbed layer which was also supported by the optical profilometry images.
Rocznik
Strony
101--113
Opis fizyczny
Bibliogr. 70 poz., rys., tab., wykr., wz.
Twórcy
  • Institute of Chemical Sciences, Faculty of Chemistry, Department of Interfacial Phenomena, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
  • Institute of Chemical Sciences, Faculty of Chemistry, Department of Interfacial Phenomena, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
  • Institute of Chemical Sciences, Faculty of Chemistry, Department of Interfacial Phenomena, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
Bibliografia
  • ADAMSON, A.W., GAST, A.P., 1997. Physical Chemistry of Surfaces, 5th ed.; New York: Wiley & Sons.
  • ALEXANDROVA, L.A., GRIGOROV, L.S., GROZEV, N.A., KARAKASHE, S.I., 2020. Investigation of interfacial free energy of three-phase contact on a glass sphere in case of cationic-anionic surfactant aqueous mixtures. Coatings 10, 573, 1-14.
  • ATKIN, R., CRAIG, V.S.J., WANLESS, E.J., BIGGS, S., 2003. Mechanism of cationic surfactant adsorption at the solid- aqueous interface. Adv. Colloid Interface Sci. 103, 219-304.
  • BAHRI, M.A., HOEBEKE, M. GRAMMENOS, A., DELANAYE, L., VANDE$WALLE, N., SERET, A. 2006. Investigation of SDS, DTAB and CTAB micelle nicroviscosities by electron spin resonance. Colloid Surf. A 290, 206-212.
  • BASTRZYK, A., POLOWCZYK, I., SZELĄG, E., SADOWSKI, Z., 2008. The effect of protein surfactant interaction on magnesite rock flotation. Physicochem. Probl. Miner. Process. 42, 261-269.
  • BÖHMER, M.R., KOOPAL, L.K., 1992a. Adsorption of ionic surfactants on variable-charge surfaces. 1. Charge effects and structure of the adsorbed layer. Langmuir 8, 2649-2659.
  • BÖHMER, M.R., KOOPAL, L.K., 1992b. Adsorption of ionic surfactants on variable-charge surfaces. 2. molecular architecture and structure of the adsorbed layer. Langmuir 8, 2660-2665.
  • CASES, J.M., VILLIERAS, F., 1992. Thermodynamic model of ionic and nonionic surfactants adsorption-abstraction on heterogeneous surfaces. Langmuir 8, 1251-1264.
  • CHIBOWSKI, E., 2002. Contact angle hysteresis due to a film pressure behind the drop. Contact Angle, Wettability and Adhesion, K.L. Mittal (Ed.), VSP, Ultrecht, 265-288.
  • CHIBOWSKI, E., PEREA-CARPIO, R., 2002. Problems of contact angle and solid surface free energy determination. Adv. Colloid Interface Sci. 98. 245-64.
  • CHIBOWSKI, E., 2003. Surface free energy of a solid from contact angle hysteresis. Adv. Colloid Interface Sci. 103, 149-172.
  • CHIBOWSKI, E., HOŁYSZ, L., 2006. Prediction of hydrophobicity/hydrophilicity of a mineral from its surface free energy components in aspect of its flotability. Annales Universitatis Mariae Curie-Skłodowska Lublin - Polonia, LIV/LV8, SECTIO AA, 117-131.
  • CHIBOWSKI, E., SZCZEŚ A., HOŁYSZ, L., 2019. Magnetic field effects on aqueous anionic and cationic surfactant solutions, Part II: Surface tension, Edelweiss Chem. Sci. J. 2, 1-6.
  • DIDYK, A.M., SADOWSKI, Z., 2012. Flotation of serpentinite and quartz using biosurfactants. Physicochem. Probl. Miner. Process. 48(2), 607-618.
  • DRELICH, J. W., 2001. Contact angles measured at mineral surfaces covered with adsorbed collector layer. Miner. Metall. Process. 18(1). 31-37.
  • DRELICH, J., CHIBOWSKI, E., MENG, D.D., TERPIŁOWSKI, K., 2011. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7, 9804-9828.
  • DRELICH, J. W., 2018. A simplified analysis of the effect of nano-asperities on particle-bubble interactions. Physicochem. Probl. Miner. Process. 54(1), 10-18.
  • DRZYMAŁA, J., 1994. Hydrophobicity and collectorless flotation of inorganic materials. Adv. Colloid Interface Sci. 50, 143-186.
  • DRZYMAŁA, J., 2007. Mineral processing. Foundations of theory and practice of minerallurgy. Ofic. Wyd. PWr, Wrocław, Poland.
  • DRZYMAŁA, J., SWEBODZIŃSKA, A., DUCHNOWSKA, M., BAKALARZ, A., ŁUSZCZKIEWICZ, A., KOWALCZUK, P.B., 2016. Preliminary study on collectorless flotation of chalcocite, bornite and copper-bearing shale in the presence of selected frothers. Mineral Engineering Conference (MEC 2016), E3S Web of Conferences 8, 01031. 1-5.
  • FAN, A. SOMASUNDARAN, P., TURRO, N.J., 1997. Adsorption of alkyltrimethylammonium bromides on negatively charged alumina. Langmuir 13, 506-510.
  • FUERSTENAU, D.W., HEALY, T.W., SOMASUNDARAN, P. 1964. The role of the hydrocarbon chain of alkyl collectors in flotation. Transactions AIME, 229, 321-323.
  • FUERSTENAU, D.W., SOMASUNDARAN, P., 2003. Flotation. In Principles of Mineral Processing. ed. M. C. Fuerstenau and K. N. Han. Littleton, CO: Society for Mining, Metallurgy, and Exploration, Inc. (SME), 245-306.
  • FUERSTENAU, D.W., JAMESON, G. J., AND YOON R. H., 2007. Froth Flotation: a Century of Innovation, SME, Littleton.
  • GAO, Y., DU, J. GU, T., 1987. Hemimicelle formation of cationic surfactants at the silica gel-water interface. J. Chem. Soc., Faraday Trans. 1, 83, 2671-2679.
  • GAO, Z., BAI, D., SUN, W., CAO, X., HU, Y., 2015. Selective flotation of scheelite from calcite and fluorite using a collector mixture. Minerals Engineering. 72, 23-26.
  • GAUDIN, A.M., FUERSTENAU, D.W., 1955. Streaming potential studies. Quartz flotation with cationic collectors Trans. AIME 202, 958-962.
  • GOLOUB, T.P., KOOPAL, L.K., BIJSTERBOSCH, B.H., SIDOROVA, M.P., 1996. Adsorption of cationic surfactants on silica. surface charge effects. Langmuir 12(13), 3188-3194.
  • GOLOUB, T.P., KOOPAL, L.K., 1997. Adsorption of cationic surfactants on silica. comparison of experiment and theory.Langmuir
  • GOLUB, T.P., KOOPAL, L.K., 2004. Adsorption of cationic surfactants on silica surface: 2. Comparison of theory with experiment. Colloid J. 66, 44-47.
  • GU, T., HUANG, Z., 1989. Thermodynamics of hemimicellization of cetyltrimethylammonium bromide at the silica gel/water interface. Colloids Surf. 40, 71-76.
  • HARWELL, J.H., HOSKINS, J.C., SCHECHTER, R. S., WADE, W.H., 1985. Pseudophase separation model for surfactant adsorption: isomerically pure surfactants. Langmuir 1, 251-262.
  • HAMON, J.J., TABOR, R. F. STRIOLO, A., GRADY, B.P., 2018. Atomic Force Microscopy force mapping analysis of an adsorbed surfactant above and below the critical micelle concentration. Langmuir 34(25) 7223-7239.
  • ISHIGURO, M., KOOPAL, L.K., 2011. Predictive model of cationic surfactant binding to humic substances. Colloids Surf. A 379, 70-78.
  • LASKOWSKI, J.S., 1989. Thermodynamic and kinetic flotation criteria. Miner. Process. Extractive Metall. Rev. 5(1-4), 25- 41.
  • LEJA, J., 1982. Surface Chemistry of Froth Flotation. Plenum Press, NY.
  • LI, P., ISHIGURO, M., 2016. Adsorption of anionic surfactant (sodium dodecyl sulfate) on silica. Soil Sci. Plant Nutrition 62(3), 223-229.
  • LIU, Z., LIAO, Y., AN, M., LAI, Q., MA, L., QIU, Y., 2019. Enhancing low-rank coal flotation using mixture of dodecane and n-valeraldehyde as a collector. Physicochem. Probl. Miner. Process. 55(1), 49-57.
  • LIU, J-F., MIN, G., DUCKER, W., 2001. AFM study of adsorption of cationic surfactants and cationic polyelectrolytes at the silica−water interface. Langmuir 17(16), 4895-4903.
  • KARLSSON, P.M., ANDERSON, M.W., PALMQVIST, A.E., 2010. Adsorption of sodium dodecyl sulfate and sodium dodecyl phosphate at the surface of aluminium oxide studied with AFM. Corros. Sci. 52, 1103-1105.
  • KHAN, A.M., SHAFIQ, F., KHAN, S.A., ALI, S., ISMAIL, B., HAKEEM A.H., RAHDAR, A.M., NAZAR, F., SAYED,M., KHAN, A.R., 2019. Surface modification of colloidal silica particles using cationic surfactant and the resulting adsorption of dyes. J. Molec. Liquids 274, 672-680.
  • KOOPAL, L.K., GOLOUB, T.P, DAVIS, T.A. 2004. Binding of ionic surfactants to purified humic acid. J. Colloid Interface Sci. 275, 360-367.
  • KOWALCZUK, P.B., 2015. Flotation and hydrophobicity of quartz in the presence of hexylamine. Int. J. Miner. Process. 140, 66-71.
  • KOWALCZUK, P.B., ZAWAŁA, J., DRZYMAŁA, J., MAŁYSA, K., 2016. Influence of hexylamine on kinetics of flotation and bubble attachment to the quartz surface. Sep. Sci. Technol. 51(15-16), 2681-2690.
  • KOWALCZUK, P.B., SIEDLARZ M., SZCZERKOWSKA S., WÓJCIK M., 2017. Facile determination of foamability index of non-ionic and cationic frothers and its effect on flotation of quartz. Sep. Sci. Technol. 53(8), 1198-1206.
  • MAGID, L.J., 1998. The surfactant-polyelectrolyte analogy. J. Phys. Chem. B 102(21), 4064-4074.
  • OWENS, D.K., WENDT, R., 1969. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741-174.
  • PARIA, S., KHILAR, K.C. 2004. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Adv. Colloid Interface Sci. 110, 75-95.
  • RENNIE, A.R., LEE, E M., SIMISTER, E.A., THOMAS, R.K., 1990. Structure of a cationic surfactant layer at the silica- water interface. Langmuir 6, 1031-1034.
  • RUDOLPH, M., and HARTMAN, R., 2017. Specific surface free energy monpnent distributions and flotabilities of mineral microparticles in flotation − An inverse gas chromatography study. Colloids Surf. A 513, 380-388.
  • RUPPRECHT, H., GU, T., 1991. Structure of adsorption layers of ionic surfactants at the solid/liquid interface. Colloids Polym. Sci. 269, 506-522.
  • SADOWSKI, Z., POLOWCZYK, I., 2004. Agglomerate flotation on fine oxide particles. Int. J. Miner. Process. 74, 85-90.
  • SCHRAM, L.L., STASIUK, E.N., MARANGONI, D.D., 2003. Surfactants and their applications. Annu. Rep. Prog. Chem., Sect. C, 99, 3-48.
  • SOKOLOV, I., ZORN, G., NICHOLS, J.M., 2016. A study of molecular adsorption of a cationic surfactant on complex surfaces with atomic force microscopy. Analyst 141, 1017-1026.
  • SOMASUNDARAN, P., FUERSTENAU, D.W., 1966. Mechanisms of alkyl sulfonate adsorption at the alumina-water interface. J. Phys. Chem. 70, 90-96.
  • SOMASUNDARAN, P., HUANG, L., 2000. Adsorption/aggregation of surfactants and their mixtures at solid-liquid interfaces. Adv. Colloid Interface Sci. 88(1-2), 179-208.
  • SZYMAŃSKA, A., SADOWSKI, Z., 2010. Effects of biosurfactants on surface properties of hematite. Adsorption 16, 233- 239.
  • TADMOR, R., DAS, R., GULEC, S., LIU, J. N’GUESSAN, H.E., SHAH, M., WASNIK, P.S., YADAV, S.B., 2017. Solid-liquid work of adhesion. Langmuir 33(15) 3594-3600.
  • TADMOR, R., BAKSI, A., GULEC, S., JADHAV, S. N’GUESSAN, H.E., SEN, K., SOMASI, V., TADMOR, M., WASNIK, P., YADAV. S., 2019. Drops that change their mind: spontaneous reversal from spreading to retraction. Langmuir 35(48), 15734-15738.
  • TADMOR, R., BAKSI, A., GULEC, S., JADHAV, S., N’GUESSAN, H.E., SOMASI, V., TADMOR, M., TANG, S., WASNIK, P., YADAV. S., 2020. Defying gravity: Drops that climb up a vertical wall of their own accord. J. Colloid Interface Sci. 562, 608-613.
  • TADMOR, R., MULTANEN, V., STERN, Y. YAKIR, Y.B., 2021. Drops retracting while forming a rim. J. Colloid Interface Sci. 581 Part B, 496-503.
  • TANFORD, C.J., 1972. Micelle shape and size. Phys. Chem. 76, 3020-3024
  • TYRODE, E., RUTLAND, M.W., BAIN, C.D., 2008. Adsorption of CTAB on hydrophilic silica studied by linear and nonlinear optical spectroscopy. J. Am. Chem. Soc. 130(51), 17434-17445.
  • YESKIE, M.A., HARWELL, J.H., 1988. On the structure of aggregates of adsorbed surfactants: the surface charge density at the hemimicelle/admicelle transition. J. Phys. Chem. 92, 2346-2352.
  • XIE, Z., JIANG, H., SUN, Z., YANG, Q., 2016. Direct AFM measurements of morphology and interaction force at solid- liquid interfaces between DTAC/CTAC and mica. J. Cent. South. Univ. 23, 2182-2190.
  • YI, H., ZHANG, X., LU, Y., SONG, S., 2018. AFM study on the wettability of mica and graphite modified with surfactant DTAB. J. Dispersion Sci. Technol. 123-126, 213-229.
  • VAN OSS, C. J., CHAUDHURY, M. K., AND GOOD, R. J., 1988. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88(6), 927-941.
  • ZDZIENNICKA, A., SZYMCZYK, K., KRAWCZYK, J., JAŃCZUK, B., 2012. Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilibria 322-323, 126-134.
  • ZHANG, J., 2013. Work of adhesion and work of cohesion. In: Wang Q.J., Chung Y.W. (eds). Encyclopedia of Tribology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92897-5_451
  • ZHANG, R., SOMASUNDARAN, P., 2006. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Interface Sci. 123-126, 213-229.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-353376fa-00ea-4bd1-b8bc-e90b1e6a31d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.