PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of PLGA/HAp and PLGA/PHB/HAp Fibrous Nanocomposite Materials for Osseous Tissue Regeneration

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study presents the manufacturing of nanofibrous structures as osteoconductive, osteoinductive materials for osseous tissue regeneration. The fibrous structures were obtained by electrospinning of poly(l-lactide-coglicolide) (PLGA) with addition of hydroxyapatite (HAp) and of a blend of PLGA with polyhydroxybutyrate with HAp added. The polymers used in the experiment were synthesised by an innovative method with a zirconium catalyst. First, the optimal electrospinning process parameters were selected. For the characterisation of the obtained osseous tissue reconstruction materials, the physical, macroscopic, functional, mechanical and thermal properties as well as crystallinity index were studied. The study of the radiation sterilisation influence on average molar mass, thermal and mechanical properties was made in order to analyse the degradation effect.
Rocznik
Strony
95--110
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciences and Textile Metrology, Center of Advanced Technologies of Human Friendly Textiles PRO HUMANO TEX, Lodz, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciences and Textile Metrology, Center of Advanced Technologies of Human Friendly Textiles PRO HUMANO TEX, Lodz, Poland
autor
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciences and Textile Metrology, Center of Advanced Technologies of Human Friendly Textiles PRO HUMANO TEX, Lodz, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
Bibliografia
  • 1. Pamuła, E., (2008). Biomateriały dla inżynierii tkankowej. Badania nad kształtowaniem struktury i właściwości biologicznych poliestrów alifatycznych. Prace monograficzne AGH Kraków, Wydział Inżynierii Materiałowej i Ceramiki, (Cracow), 1
  • 2. Ashammakhi, N., Mäkelä, E.A., Törmälä, P., Waris, T., Rokkanen, P., (2000). Effect of self-reinforced polyglycolide membrane on osteogenesis: an experimental study in rats. Plast. Surg., 23, 423-428
  • 3. He, L., Liao, S., Quan, D., Ngiam, M., Chan, C.K., Ramakrishna, S., Lu, J., (2009). The influence of lamininderived peptides conjugated to Lys-capped PLLA on neonatal mouse cerebellum C17.2 stem cells. Biomaterials, 30, 1578-1586
  • 4. Keskin, D.S., Tezcaner, A., Korkusuz, P., Korkusuz, F., Hasirci, V., (2005). Collagen-chondrotin sulfate-based PLLA-SAIB-coated rhBMP-2 delivery system for bone repair Biomaterials, 26, 4023-4034
  • 5. Shikinami, Y., Matsusue, Y., Nakamura, T., (2005). The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly l-lactide (F-u-HA/PLLA). Biomaterials, 26, 5542-5551
  • 6. LeGeros, R.Z., Lin, S., Rohanizadeh, R., Mijares, D., LeGeros, J.P., (2003). Biphasic calcium phosphate bioceramics: preparation, properties and applications, J. Mater. Med., 14, 201-209
  • 7. Orlovskii, V.P., Komlev, V.S., Barinov, S.M., (2002). Hydroxyapatite-Based Ceramics. Inorganic Materials, 10, 973-984
  • 8. Ślósarczyk, A., Stobierska, E., Paszkiewicz, Z., Gawlicki, M., (1996). Calcium phosphate materials prepared from precipitates with various calcium: phosphorous molar ratios. J. Am. Ceram. Soc., 79, 2539-2544
  • 9. Ślósarczyk, A., Piekarczyk, J., (1999). Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate. Ceramics Int. 25, 561-565
  • 10. Yoshikawa, H., Myoui, A., (2005). Bone tissue engineering with porous hydroxyapatite ceramics J. Art. Organs, 8, 131-136
  • 11. Nie, X., Leyland, A., Matthews, A., (2000). Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using and electrophoresis. Surf. Coat. Tech. 125, 407-414
  • 12. Noh, H.K., Lee, S.W., Kim, J.-M., Oh, J.-E., Kim, K.-H., Chung, Ch.-P., Choi, S.-Ch., Park, W.H., Min, B.-M., (2006). Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials, 27, 3934-3944
  • 13. Ramesh, S., Tan, C.Y., Peralta, C.L., Teng, W.D., (2007). The effect of manganese oxide on the sinterability of hydroxyapatite. Sci. Technol. Adv. Mater., 8, 257-263
  • 14. Søballe, K., (1993). Hydroxyapatite ceramic coating for bone implant fixation: Mechanical and histological studies in dogs. Acta Orthopead. 64, 1-58
  • 15. Vallet-Regi, M., Gonzalez-Calbet, J.M., (2004). Calcium phosphates as substitution of bone tissues. Prog. Solid State Ch. 32, 1-31
  • 16. Illić, V., Šaponjić, Z., Vodnik, V., Potkonjak, B., Jovančić, P., Nedeljković, J., Radetić, M., (2009). The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohyd. Polym. 78, 564-569
  • 17. Yates, C.C., Whaley, D., Babu, R., Zhang, J., Krishna, P., Beckman, E., Pasculle, A.W., Wells A., (2007). The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound model. Biomaterials, 28, 3977-3986
  • 18. Brammer, K.S., Oh, S., Cobb, Ch.J., Bjursten, L.M., van der Heyde, H., Jin, S., (2009). Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomat. 5, 3215-3223
  • 19. Lübbe, A.S., Alexiou, Ch., Bergemann, Ch., (2001). Clinical Applications of Magnetic Drug Targeting. J. Surg. Res., 95, 200-206
  • 20. Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M., Wust, P., Nadobny, J., Schirra, H., Schmidt, H., Deger, S., Loening, S., Lanksch, W., Felix, R., (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118-126
  • 21. Maier-Hauff, K., Rothe, R., Scholz, R., Gneveckow, U., Wus,t P., Thiesen, B., Feussner, A., von Deimling, A., Waldoefner, N., Felix, R., Jordan, A.,(2007). Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme. J. Neuro- Oncol. 81, 53-60
  • 22. Kong, Y.-M., Bae, Ch.-J., Lee, S.-H., Kim, H.-W., Kim, H.- E., (2005). Improvement in biocompatibility of ZrO2-Al2O3 nano- composite by addition of HA, Biomaterials, 26, 509- 517
  • 23. Peltola, T., Jokinen, M., Veittola, S., Rahiala, H., Yli-Urpo, A., (2001). Influence of sol and stage of spinnability on in vitro bioactivity and dissolution of sol-gel-derived SiO2 fibers Biomaterials, 22, 589-598
  • 24. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., Ramakrishna, S., (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp. Sci. Techn., 63, 2223–2253
  • 25. Vollath, D., (2008). Nanomaterials: An Introduction to Synthesis. Properties and Applications, Wiley-VCH Verlag GmbH&Co. KGaA, (Weinheim)
  • 26. Burger, C., Hsiao, B.S., Chu, B., (2006). Nanofibrous materials and their applications, Annu. Rev. Mater. Res., 36, 333–368
  • 27. Ionescu, L.C., Lee, G. C., Sennett, B.J., Burdick, J.A., Mauck, R.L., (2010). An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials, 31, 4113–4120
  • 28. Liu, W., Thomopoulos, S., Xia, Y., (2012). Electrospun Nanofibers for Regenerative Medicine. Adv. Healthcare Mater. 1, 10–25
  • 29. Lim, L.-T., Auras, R., Rubino, M., (2008). Processing technologies for poly(lactic acid). Prog. Polym. Sci., 33, 820–852
  • 30. Pillai, C.K.S., Sharma, C.P., (2009). Electrospinning of Chitin and Chitosan Nanofibres. Trends Biomater. Artif. Organs, 22, 179-201
  • 31. Ito, Y., Hasuda, H., Kamitakahara, M., Ohtsuki, Ch., Tanihara, M., Kang, I.-K., Kwon, O.H., (2005). A composite of hydroxyapatite with electrospun biodegradable nanofibres as a tissue engineering material. J. Biosci. Bioeng. 100, 43-49
  • 32. Li, Ch., Jin, H.-J., Botsaris, G.D., Kaplan, D.L., (2005). Silk apatite composites from electrospun fibres. J. Mater. Res. 20, 3374-3384
  • 33. Shin, H.J., Lee, Ch.H., Cho, I.H., Kim, Y.-J., Lee, Y.- J., Kim, I.A., Park K.-D., Yui N., Shin J.-W., (2006). Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J. Biomater. Sci. Polym. Ed., 17, 103-119
  • 34. Subramanian, A., Vu, D., Larsen, G.F., Lin, H.-Y., (2005). Preparation and evaluation of the electrospun chitosan/ PEO fibers for potential applications in cartilage tissue engineering. J. Biomater. Sci. Polym. Ed. 16, 861-873
  • 35. Riboldi, S.A., Sampaolesi, M., Neuenschwander, P., Cossu, G., Mantero, S., (2005). Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials, 26, 4606-4615
  • 36. Sahoo, S., Ouyang, H., Goh, C.-H.J., Goh, Tay, T.E., Toh, S.L., (2006). Characterization of a Novel Polymeric Scaffold for Potential Application in Tendon/Ligament Tissue Engineeing, Tissue Eng. 12, 91-99
  • 37. Jeong, L., Yeo, I.-S., Kim, H.N., Yoon, Y., Jang, D.H., Jung, S.Y., Min, B.-M., Park, W.H., (2009). Plasma-treated silk fibroin nanofibers for skin regeneration. Int. J. Biolog. Macromol. 44, 222-228
  • 38. Dobrzyński, P., Kasperczyk, J., Janeczek, H., Bero, M., (2001). Synthesis of Biodegradable Copolymers with the Use of Low Toxic Zirconium Compounds. 1. Copolymerization of Glycolide with L-Lactide Initiated by Zr(Acac)4. Macromolecules, 34 (15), 5090–5098
  • 39. Adamus, G., Kowalczuk, M., (2008). Anionic Ring-Opening Polymerization of -Alkoxymethyl-Substituted-Lactones. Biomacromolecules, 9, 696–703
  • 40. Patent Nr EP 2325 355 B1 nt.: System for electrospinning of fibers, Twórcy: Krucińska I., Gliścińska E., Chrzanowski M.
  • 41. ISO 9073-1:1989 standard, Methods of test fornonwovens. Determination of mass per unit area
  • 42. ISO 9073-2:1995 standard Methods of test for nonwovens. Determination of thickness
  • 43. PN EN ISO 9073-15:2009standardTextiles. Test methods for nonwovens. Determination of air permeability
  • 44. EN ISO 29073-3:1992 standard, Methods of test for nonwovens. Determination of tensile strength and elongation
  • 45. Guide to Expression of Uncertainty in Measurement, (1999). GUM, (Warszawa)
  • 46. Puchalski, M., Krucinska, I., Sulak, K., Chrzanowski, M., Wrzosek, H., (2013). Influence of the calender temperature on the crystallization behaviors of polylactide spunbonded non-woven fabrics. Textile Research Journal, DOI:10.1177/0040517513478480
  • 47. Stoclet, G., Seguela, R., Lefebvre, J-M., (2010). New insights on the strain-induced mesophase of poly(D,Llactide): in situ WAXS and DSC study of thermo-mechanical stability. Macromolecules, 43, 7228-7237
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3530789d-a8ff-4f68-addb-fa71a438fbdf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.