PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zeolitization of Coal Fly Ashes and Coal Fly Ash Microspheres

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research investigated the efficiency of zeolitization of silicon and alumina bearing combustion by-products, i.e. coal fly ash and coal microspheres. Lab-scale alkali activation with 3M sodium hydroxide solution of raw materials obtained from a Polish coal-fired power plant were conducted at 100 °C. The obtained result proved that both combustion by-products are prone to zeolitization under the tested conditions with the obtained zeolite yields of 60 and 55% in the case of fly ash and microspheres, respectively. The main identified zeolite in the case of both by-products was NaP1.
Rocznik
Strony
109--121
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Institute of Energy and Fuel Processing Technology, ul. Zamkowa 1, 41-803 Zabrze, Poland
  • Synthos S.A., ul. Chemików 1, 32-600 Oświęcim, Poland
autor
  • Institute of Energy and Fuel Processing Technology, ul. Zamkowa 1, 41-803 Zabrze, Poland
Bibliografia
  • 1. Adamczyk, Z., Białecka, B. 2005. Hydrothermal synthesis of zeolites from Polish coal fly ash. Polish Journal of Environmental Studies, 14(6), 713–719.
  • 2. Adamczyk, Z., Gruchociak, E., Loska, K. 2011. Sorption of heavy metals in synthetic zeolite type NaP1. Górnictwo i Geologia, 6(3), 5–12.
  • 3. Amoni, B. C. et al. 2022. Effect of coal fly ash treatments on synthesis of high-quality zeolite A as a potential additive for warm mix asphalt. Materials Chemistry and Physics, 275, 125197.
  • 4. Aono, H. et al. 2018. Cs + decontamination properties of mordenites and composite materials synthesized from coal fly ash and rice husk ash. Journal of Asian Ceramic Societies, 6(3), 213–221.
  • 5. Bertolini, T.C.R. et al. 2013. Adsorption of Crystal Violet Dye from Aqueous Solution onto Zeolites from Coal Fly and Bottom Ashes. Orbital: the Electronic Journal of Chemistry, 5(3), 179–191.
  • 6. Cardoso, A.M. et al. 2015. Synthesis of zeolite NaP1 under mild conditions using Brazilian coal flyash and its application in wastewater treatment. Fuel, 139, 59–67.
  • 7. Ceder, J. et al. 2018. Synteza filipsytu z popiołów lotnych oraz jego potencjalne zastosowanie w inżynierii środowiska. Zeszyty Naukowe Instytu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, 102, 171–184.
  • 8. Czuma, N. et al. 2019. Synthesis of zeolites from fly ash with the use of modified two-step hydrothermal method and preliminary SO2 sorption tests. Adsorption Science and Technology, 37(1–2), 61–76.
  • 9. Derkowski, A. et al. 2006. Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technology, 166(1), 47–54.
  • 10. Derkowski, A., Michalik, M. 2007. Statistical approach to the transformation of fly ash into zeolites. Mineralogia Polonica, 38(1), 47–69.
  • 11. Feng, R. et al. 2019. Synthesis of ZSM-5 Zeolite Using Coal Fly Ash as an Additive for the Methanol to Propylene (MTP) Reaction. Catalyst, 9, 788.
  • 12. Gollakota, A. et al. 2021. Coal bottom ash derived zeolite (SSZ-13) for the sorption of synthetic anion Alizarin Red S (ARS) dye. Journal of Hazardous Materials, 416, 125925.
  • 13. He, P.Y. et al. 2020. Low-cost and facile synthesis of geopolymer-zeolite composite membrane for chromium(VI) separation from aqueous solution. Journal of Hazardous Materials, 392(13), 122359.
  • 14. Hollman, G.G., Steenbruggen, G., Janssen-Jurkovičová, M. 1999. Two-step process for the synthesis of zeolites from coal fly ash. Fuel, 78(10), 1225–1230.
  • 15. Hong, J.L.X. et al. 2017. Conversion of Coal Fly Ash into Zeolite Materials: Synthesis and Characterizations, Process Design, and Its Cost-Benefit Analysis. Industrial and Engineering Chemistry Research, 56(40), 11565–11574.
  • 16. Hu, T. et al. 2017. Synthesis of zeolites Na-A and Na-X from tablet compressed and calcinated coal fly ash. Royal Society Open Science, 4(10), 170921.
  • 17. Hui, K.S., Chao, C.Y.H. 2006. Effects of step-change of synthesis temperature on synthesis of zeolite 4A from coal fly ash. Microporous and Mesoporous Materials, 88(1–3), 145–151.
  • 18. Inada, M. et al. 2005. Synthesis of zeolite from coal fly ashes with different silica-alumina composition. Fuel, 84(2–3), 299–304.
  • 19. Król, M., Rożek, P., Mozgawa, W. 2017. Synthesis of the sodalite by geopolymerization process using coal fly ash. Polish Journal of Environmental Studies, 26(6), 2611–2618.
  • 20. Kunecki, P. et al. 2017. Synthesis of faujasite (FAU) and tschernichite (LTA) type zeolites as a potential direction of the development of lime Class C fly ash. International Journal of Mineral Processing, 166, 69–78.
  • 21. Kunecki, P. et al. 2018. Influence of the reaction time on the crystal structure of Na-P1 zeolite obtained from coal fly ash microspheres. Microporous and Mesoporous Materials, 266, 102–108.
  • 22. Kunecki, P. et al. 2021. Influence of the fly ash fraction after grinding process on the hydrothermal synthesis efficiency of Na-A, Na-P1, Na-X and sodalite zeolite types. International Journal of Coal Science and Technology, 8(2), 291–311.
  • 23. Kunecki, P., Panek, R., Wdowin, M. 2016. Na-P1 zeolite synthesis and its crystalline structure ripening through hydrothermal process using coal combustion by-products as substrates. Geology, Geophysics & Environment, 42(1), 90–91.
  • 24. Kurniawan, R.Y. et al. 2018. Synthesis of Zeolite-X from Bottom Ash for H2 Adsorption. IOP Conference Series: Materials Science and Engineering, 299, 012083.
  • 25. Lankapati, H.M. et al. 2020. Mordenite-Type Zeolite from Waste Coal Fly Ash: Synthesis, Characterization and Its Application as a Sorbent in Metal Ions Removal. ChemistrySelect, 5(3), 1193–1198.
  • 26. Liu, Y., Yan, C., Zhang, Z. 2016. A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution. Fuel, 185, 181–189.
  • 27. Liu, Y., Yan, C., Qiu, X., et al. 2016. Preparation of faujasite block from fly ash-based geopolymer via in-situ hydrothermal method. Revista Mexicana de Urologia, 76(1), 433–439.
  • 28. Missengue, R.N.M. et al. 2017. Transformation of South African coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst. Comptes Rendus Chimie, 20(1), 78–86.
  • 29. Musyoka, N.M. 2009. Hydrothermal synthesis and optimisation of zeolite Na-P1 from South African coal fly ash. M.Sc. Thesis, University of the Western Cape, Bellville.
  • 30. Musyoka, N.M. et al. 2012. Optimization of hydrothermal synthesis of pure phase zeolite Na-P1 from South African coal fly ashes. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 47(3), 337–350.
  • 31. Padhy, R.R. et al. 2015. Ultrafine nanocrystalline mesoporous NaY zeolites from fly ash and their suitability for eco-friendly corrosion protection. Journal of Porous Materials, Springer US, 22(6), 1483–1494.
  • 32. Pichór, W. et al. 2014. Synthesis of the zeolites on the lightweight aluminosilicate fillers. Materials Research Bulletin, 49(1), 210–215.
  • 33. https://legislacja.gov.pl/projekt/12356300/katalog/12853158#12853158.
  • 34. Ren, X. et al. 2020. Synthesis of zeolites from coal fly ash for the removal of harmful gaseous pollutants: A review. Aerosol and Air Quality Research, 20(5), 1127–1144.
  • 35. Shabani, J.M. et al.2019. Synthesis of hydroxy sodalite from coal fly ash for biodiesel production from waste-derived maggot oil. Catalysts, 9(12), 1–14.
  • 36. Sivalingam, S., Sen, S. 2018. Rapid ultrasound assisted hydrothermal synthesis of highly pure nanozeolite X from fly ash for efficient treatment of industrial effluent. Chemosphere, 210, 816–823.
  • 37. Uliasz-Bocheńczyk, A., Mazurkiewicz, M. Mokrzycki, E. 2015. Popioły z energetyki – odpad, produkt uboczny, surowiec. Mineral Resources Management, 31(4), 139–150.
  • 38. Um, N.I. et al. 2009. Immobilization of Pb, Cd and Cr by Synthetic NaP1 Zeolites from Coal Bottom Ash Treated by Density Separation. Resources Processing, 56(3), 130–137.
  • 39. Uzarowicz, L., Zagorski, Z. 2015. Mineralogy and chemical composition of technogenic soils (Technosols) developed from fly ash and bottom ash from. Soil Science Annual, 66(2), 82–91.
  • 40. Vilakazi, A.Q. et al. 2022. The Recycling of Coal Fly Ash: A Review on Sustainable Developments and Economic Considerations. Sustainability, 14(4), 1–32.
  • 41. Wajda, A., Kozioł, M. 2015. Microspheres – acquisition, properties, applications. Inżynieria Środowiska, 1, 15–19.
  • 42. Wałek, T.T., Saito, F., Zhang, Q. 2008. The effect of low solid/liquid ratio on hydrothermal synthesis of zeolites from fly ash. Fuel, 87(15–16), 3194–3199.
  • 43. Wang, C.F. et al. 2008. Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method. Journal of Hazardous Materials, 155(1–2), 58–64.
  • 44. Wise, W.S. 2013. Zeolites. Reference Module in Earth Systems and Environmental Sciences, 1–11.
  • 45. Woolard, C.D., Petrus, K., Van der Horst, M. 2000. The use of a modified fly ash as an adsorbent for lead. Water SA, 26(4), 531–536.
  • 46. Xu, P. et al. 2017. Influence of Hg occurrence in coal on accuracy of Hg direct measurement based on thermal decomposition. International Journal of Coal Geology, 170, 14–18.
  • 47. Zhou, T. et al. 2021. Organotemplate-free synthesis of MOR zeolite from coal fly ash through simultaneously effective extraction of Si and Al. Microporous and Mesoporous Materials, 314, 110872.
  • 48. Zhu, M.H. et al. 2014. Structure directing agent-free synthesis of ZSM-5 zeolite membranes using coal fly ash as alumina source. Chemistry Letters, 43(6), 772–774.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3529e8d0-c3dc-4b79-a824-9fc7df7747d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.