PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interaction mechanism of non-metallic particles with crystallization front

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The process of steel solidification in the CCS mould is accompanied by a number of phenomena relating to the formation of non-metallic phase, as well as the mechanism of its interaction with the existing precipitations and the advancing crystallization front. In the solidification process the non-metallic inclusions may be absorbed or repelled by the moving front. As a result a specific distribution of non-metallic inclusions is obtained in the solidified ingot, and their distribution is a consequence of these processes. The interaction of a non-metallic inclusion with the solidification front was analyzed for alumina, for different values of the particle radius. The simulation was performed with the use of own computer program. Each time a balance of forces acting on a particle in its specific position was calculated. On this basis the change of position of alumina particle in relation to the front was defined for a specific radius and original location of the particle with respect to the front.
Słowa kluczowe
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 30. Mickiewicza Al., 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 30. Mickiewicza Al., 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 30. Mickiewicza Al., 30-059 Kraków, Poland
Bibliografia
  • [1] D. Kalisz, Termodynamiczna charakterystyka powstawania fazy niemetalicznej w ciekłej stali, Akapit Krakow (2013).
  • [2] D. Kalisz, Archives of Metallurgy and Materials 59, 2, 493-500 (2014).
  • [3] D. Kalisz, P. L. Żak, Kovove Materialy 53, 35-41 (2015).
  • [4] P. L. Żak, D. Kalisz, J. Lelito, M. Szucki, B. Gracz, J. S. Suchy, Metallurgy 54, 2, 357-360 (2015).
  • [5] S. Kimura, Y. Nabeshima, K. Nakajima, S. Mizoguchi, Metal Trans. B 31 B, 1013-1021 (2000).
  • [6] C. Pfeiler, B.G. Thomas, M. Wu, A. Ludwig, A. Kharicha, Steel Research Int. 77, 7, 1-10 (2006).
  • [7] Q. Han, J. Hunt, ISIJ Int. 35, 693-699 (1995).
  • [8] K. Mukai, M. Zeze, Steel Research 74, 3, 131-138 (2003).
  • [9] L. Zhang, JOM. 65, 9, 1138- 1144 (2013).
  • [10] J. Rogge, J.Crystal Growth, 94, 726-738 (1989).
  • [11] S. Sen, B.K. Dhindaw, D.M. Stefanescu, A. Catalina, P.A. Curreri, J. Crystal Growth 173, 574-584 (1997).
  • [12] D. Shangguan, S. Ahuja, D.M. Stefanescu, Met. Trans. A 23A, 669-680 (1992).
  • [13] H. Esaka, Y. Kuroda, K. Shinozuka, M. Tamura, ISIJ Int. 44, 682 (2004).
  • [14] S.N. Omenyi, A.W Neumann, J.Appl. Phys., 47, 9, 3956-3962 (1976).
  • [15] H. Shibata, H. Yin, S. Yoshinaga, T. Emi, M. Suzuki, ISIJ Int., 38, 149-156 (1998).
  • [16] D. M. Stefanescu, B. K. Dhindaw, S. A. Kacar, A.Moitra, Met. Trans. A 19A, 2847-2855 (1988).
  • [17] P. G. Saffman, J. Fluid Mech. 22, 385-400, (1965).
Uwagi
EN
This work was sponsored by Ministry of Science as the statute work – AGH UST – University of cience and Technology in Krakow (contract 11.11.170.318.14).
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35293758-67d8-4a1d-8c5a-5173f62e91b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.