PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Klimat i oceanografia przełomu jury i kredy zachodniej Tetydy

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Climate and oceanography of the Jurassic/Cretaceous transition in the Western Tethys
Języki publikacji
PL
Abstrakty
EN
The key aspect for evaluation of potential effects of ongoing environmental changes is identification of their controlson one hand, and understanding of their mutual relations on other. In this context, the best source of information about medium and long term coThe key aspect for evaluation of potential effects of ongoing environmental changes is identification of their controlson one hand, and understanding of their mutual relations on other. In this context, the best source of information about medium and long term consequences of various environmental processes is the geologic record. Numerous different-scale palaeoenvironmental events took place during the Jurassic/Cretaceous transition; amongst them, the best documented so far are: long term marine regression during the Tithonian-early Berriasian, climate aridization during the late Tithonian-early Berriasian, and tectonic activity in western parts of the Neo Tethys Ocean during the late Berriasian-Valanginian. This study, which is based on the Ph Ddissertation of Damian Gerard Lodowski, attempts to reconstruct the latest Jurassic-earliest Cretaceous paleoenvironment and its evolution in the area of the Western Tethys, with special attention paid to cause-and-effect relationships between climate changes, tectonic activity and oceanographic conditions (perturbations in marine circulation and bioproductivity). Here are presented the basic results of high-resolution geochemical investigations performed in the Transdanubian Range (Hárskút and Lókút, Hungary), High-Tatric (Giewont, Poland) and Lower Sub-Tatric (Pośrednie III, Poland) series, Pieniny Klippen Belt (Brodno and Snežnica, Slovakia; Velykyi Kamianets, Ukraine) and Western Balkan (Barlya, Bulgaria) sections. The sections were correlated and compared in terms ofpaleoredox conditions (authigenic U), accumulation of micronutrient-type element (Zn) and climate changes (chemical index of alteration, CIA), providinga consistent scenario of the Tithonian-Berriasian palaeoenvironment evolution in various western Tethyan basins. Amongst the first-order trends and events, characteristic of studied sections are the two intervals recording an oxygen deficient at the seafloor: 1) the upper Tithonian-lowermost Berriasian (OD I); and 2) at the lower/upper Berriasian transition (OD II). Noteworthy, this phenomena cooccurred with elevated accumulations of nutrient-type elements (i. e. enrichment factor of Zn). Besides, collected data document the late Tithonian-early Berriasian trend of climate aridization, as well as the late Berriasian humidification. Such record is explained by a model, in which decreasing intensity of atmospheric circulation during the late Tithonian-early Berriasian was directly connected with climate cooling and aridization. This process resulted in lesser efficiency of up- and/or downwelling currents, which induced sea water stratification, seafloor hypoxia and perturbations in the nutrient-shuttle process during the OD I. On the other hand, the OD II interval may correspond to tectonic reactivation in the Neo Tethyan Collision Belt. This process might have led to physical cutoff of Alpine Tethys basins from the Neo Tethyan circulation (both atmospheric and oceanic), driving the limited stratification in the former, and limiting the effect of gradual humidification of global climate (i.e. due to increasing strength of monsoons and monsoonal upwellings). nsequences of various environmental processes is the geologic record. Numerous different-scale palaeoenvironmental events took place during the Jurassic/Cretaceous transition; amongst them, the best documented so far are: long term marine regression during the Tithonian-early Berriasian, climate aridization during the late Tithonian-early Berriasian, and tectonic activity in western parts of the Neo Tethys Ocean during the late Berriasian-Valanginian. This study, which is based on the Ph Ddissertation of Damian Gerard Lodowski, attempts to reconstruct the latest Jurassic-earliest Cretaceous paleoenvironment and its evolution in the area of the Western Tethys, with special attention paid to cause-and-effect relationships between climate changes, tectonic activity and oceanographic conditions (perturbations in marine circulation and bioproductivity). Here are presented the basic results of high-resolution geochemical investigations performed in the Transdanubian Range (Hárskút and Lókút, Hungary), High-Tatric (Giewont, Poland) and Lower Sub-Tatric (Pośrednie III, Poland) series, Pieniny Klippen Belt (Brodno and Snežnica, Slovakia; Velykyi Kamianets, Ukraine) and Western Balkan (Barlya, Bulgaria) sections. The sections were correlated and compared in terms ofpaleoredox conditions (authigenic U), accumulation of micronutrient-type element (Zn) and climate changes (chemical index of alteration, CIA), providinga consistent scenario of the Tithonian-Berriasian palaeoenvironment evolution in various western Tethyan basins. Amongst the first-order trends and events, characteristic of studied sections are the two intervals recording an oxygen deficient at the seafloor: 1) the upper Tithonian-lowermost Berriasian (OD I); and 2) at the lower/upper Berriasian transition (OD II). Noteworthy, this phenomena cooccurred with elevated accumulations of nutrient-type elements (i. e. enrichment factor of Zn). Besides, collected data document the late Tithonian-early Berriasian trend of climate aridization, as well as the late Berriasian humidification. Such record is explained by a model, in which decreasing intensity of atmospheric circulation during the late Tithonian-early Berriasian was directly connected with climate cooling and aridization. This process resulted in lesser efficiency of up- and/or downwelling currents, which induced sea water stratification, seafloor hypoxia and perturbations in the nutrient-shuttle process during the OD I. On the other hand, the OD II interval may correspond to tectonic reactivation in the Neo Tethyan Collision Belt. This process might have led to physical cutoff of Alpine Tethys basins from the Neo Tethyan circulation (both atmospheric and oceanic), driving the limited stratification in the former, and limiting the effect of gradual humidification of global climate (i.e. due to increasing strength of monsoons and monsoonal upwellings).
Rocznik
Strony
514--522
Opis fizyczny
Bibliogr. 65 poz., rys., wykr.
Twórcy
  • Wydział Geologii, Uniwersytet Warszawski, ul. Żwirki i Wigury 93, 02-089 Warszawa
  • Pañstwowy Instytut Geologiczny – Państwowy Instytut Badawczy, ul. Rakowiecka 4, 00-975 Warszawa
Bibliografia
  • 1. ABBINK O., TARBARONA J., BRINKHUIS H., VISSCHER H. 2001 - Late Jurassic to earliest Cretaceous palaeoclimatic evolution of the southern North Sea. Glob. Planet. Change, 30: 231-256.
  • 2. ÁRGYELÁN G.B. 1997 - Ophiolitic detritus in the Lower Cretaceous sandstone of Gerecse Mountains, Hungary: petrography, detrital modes, provenance. Mineral. Slovac., 29: 262-263.
  • 3. BIRKENMAJER K. 1977 - Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt. Stud. Geol. Pol.,45: 1-158.
  • 4. BŁAŻEJOWSKI B., PSZCZÓŁKOWSKI A., GRABOWSKI J., WIERZBOWSKI H., DECONINCK J.-F., OLEMPSKA E., TEODORSKI A., NAWROCKI J. 2023 - Integrated stratigraphy and clay mineralogy of the Owadów-Brzezinki section (Lower-Upper Tithonian transition, Central Poland): implications for correlations between the Boreal and the Tet- hyan domains and palaeoclimate. J. Geol. Soc.,doi: 10.1144/jgs2022-073
  • 5. BOVER-ARNAL T., STRASSER A. 2013 - Relative sea-level change, climate, and sequence boundaries: insights from the Kimmeridgian to Berriasian platform carbonates of Mount Saleve (E France). Internat. J. Earth Sci., 102: 493-515.
  • 6. CALVERT S.E., PEDERSEN T.F. 2007 - Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation and Application. Develop. Marin. Geol., 1: 567-644.
  • 7. CSONTOS L., VÖRÖS A. 2004 - Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeograph., Palaeoclimat., Palaeoecolog., 210: 1-56.
  • 8. DE WEVER P., O'DOGHERTY L., GORICAN Š. 2014 - Monsoon as a cause of radiolarite in the Tethyan realm. Comptes Rendus Geosci., 346: 287-297.
  • 9. DECONINCK J.-F., CHAMLEYH., DEBRABANT P., COLBEAUX J.P. 1983 - Le Boulonnais au Jurassique supérieur: données de la minéralogie des argiles et de la géochimie. Ann. Soc. Géol. Nord, 102: 145-152.
  • 10. FODOR L., SZTANÓ O., K0VÉR S. 2013 - Mesozoic deformation of the northern Transdanubian Range (Gerecse and Vértes Hills). Acta Mineralog.-Petrograph., 31: 1-52.
  • 11. FÖLLMI K. B. 2012 - Early Cretaceous life, climate and anoxia. Cretaceous Res., 35: 230-257.
  • 12. FÖZY I., JANSSEN N.M.M., PRICE G. D., KNAUER J., PÁLFY J. 2010-Integrated isotope and biostratigraphy of a Lower Cretaceous section from the Bakony Mountains (Transdanubian Range, Hungary): A new Tethyan record of the Weissert event. Cretaceous Res., 3 1 : 525-545.
  • 13. GAWLICK H.-J., FRISCH W., VECSEI A., STEIGER T., BÖHM F. 1999 - The change from rifting to thrusting in the Northern Calcareous Alps as recorded in Jurassic sediments. Geol. Rundsch., 87: 644-657.
  • 14. GAWLICK H.-J., MISSONI S., SCHLAGINTWEIT F., SUZUKI H., FRISCH W., KRYSTYN L., LEIN R. 2009 - Jurassic Tectonostratigraphy of the Austroalpine Domain. J. Alpine Geol., 50: 1-152.
  • 15. GOLONKA J., KROBICKI M. 2004 - Jurassic palaeogeography of the Pieniny and Outer Carpathian basins. Rivisit. Ital. Paleotolog. Stratigraf., 110: 5-14.
  • 16. GOLONKA J., KROBICKI M., WAŚKOWSKA A. 2018 - The Pieniny Klippen Belt in Poland. Geol., Geophys., Environ., 44: 111-125.
  • 17. GOLONKA J., OSZCZYPKO N., ŚLĄCZKA A. 2000 - Late Carboniferous-Neogene geodynamic evolution and palaeogeography of the circum-Carpathian region and adjacent areas. Ann. Soc. Geol. Pol., 70: 107-136.
  • 18. GRABOWSKI J., HAAS J., MÁRTON E., PSZCZÓŁKOWSKI A. 2010a - Magneto- and biostratigraphy of the Jurassic/Cretaceous boundary in the Lókút section (Transdanubian Range, Hungary). Stud. Geophys. Geodaet., 54: 1-26.
  • 19. GRABOWSKI J., SCHNYDER J., SOBIEŃ K., KOPTÍKOVÁ L., KRZEMIŃSKI L., PSZCZÓŁKOWSKI A., HEJNAR J., SCHNABL P. 2013a - Magnetic susceptibility and spectral gamma logs in the Tithonian-Berriasian pelagic carbonates in the Tatra Mts (Western Carpathians, Poland): Palaeoenvironmental changes at the Jurassic/Cretaceous boundary. Cretaceous Res., 43: 1-17.
  • 20. GRABOWSKI J., HAAS J., STOYKOVA K., WIERZBOWSKI H., BRAŃSKI P. 2017 - Environmental changes around the Jurassic/Cretaceous transition: New nannofossil, chemostratigraphic and stable isotope data from the Lókút section (Transdanubian Range, Hungary). Sediment. Geol., 360: 54-72.
  • 21. GRABOWSKI J., BAKHMUTOV V., KDÝR Š., KROBICKI M., PRUNER P., REHÁKOVÁ D., SCHNABL P., STOYKOVA K., WIERZBOWSKI H. 2019 - Integrated stratigraphy and palaeoenvironmental interpretation of the Upper Kimmeridgian to Lower Berriasian pelagic sequences of the Velykyi Kamianets section (Pieniny Klippen Belt, Ukraine). Palaeogeograph., Palaeoclimatolog., Palaeoecolog., 532: 109216.
  • 22. GRABOWSKI J., CHMIELEWSKI A., PLOCH I., ROGOV M., SMOLEŃ J., WÓJCIK-TABOL P., LESZCZYŃSKI K., MAJ-SZELIGA K. 2021a - Palaeoclimatic changes and inter-regional correlations in the Jurassic/Cretaceous boundary interval of the Polish Basin: portable XRF and magnetic susceptibility study. Newslet. Stratigraph., 54: 123-158.
  • 23. GRABOWSKI J., STOYKOVA K., WIERZBOWSKI H., WÓJCIKTABOL P. 2021b - Upper Berriasian chemostratigraphy, clay minerals and calcareous nannofossils of the Barlya section (Western Balkan, Bulgaria): implications for paleoclimate and productivity changes, and stratigraphic correlations across the Alpine Tethys. Palaeogeograph., Palaeoclimatolog., Palaeoecolog., 567: 110252.
  • 24. GRÖCKE D.R., PRICE G.D., RUFFEL A.H., MUTTERLOSE J., BARABOSHKIN E. 2003 - Isotopic evidence for Late Jurassic-Early Cretaceous climate change. Palaeogeograph., Palaeoclimatolog., Palaeoecolog., 202: 97-118.
  • 25. HAAS J., PÉRÓ C. 2004 - Mesozoic evolution of the Tisza Mega-unit. Internat. J. Earth Sci., 93: 297-313.
  • 26. HALLAM A., GROSE J.A., RUFFELA.H. 1991 - Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeograph., Palaeoclimatolog., Palaeoecolog., 81: 173-187.
  • 27. HAQ B.U. 2014 - Cretaceous eustasy revisited. Glob. Planet. Change, 113: 44-58.
  • 28. HAQ B.U. 2018 - Jurassic sea-level variations: A reappraisal. GSA Today, 28: 4-10.
  • 29. HARDENBOL J., THIERRY J., HARLEY M.B., JACQUIN TH., DE GRACIANSKYP.-C.,VAILP.R. 1998 - Mesozoic and Cenozoic sequence chronostratigraphic framework of Europeanbasins. Appendix. SEPM Spec. Publ., 160: 763-786.
  • 30. HESSELBO S.P., DECONINCK J.-F., HUGGETT J.M., MORGANS-BELL H.S. 2009-LateJurassic palaeoclimatic change from clay mineralogy and gamma-ray spectrometry of the Kimmeridge Clay, Dorset, UK. J. Geol. Soc., London, 166: 1123-1133.
  • 31. JONES B., MANNING, A.C. 1994 - Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol., 111: 111-129.
  • 32. KOZUR H. 1991 - The evolution of the Meliata-Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians. Palaeogeograph., Palaeoclimatolog., Palaeoecolog., 87: 109-135.
  • 33. LEFELD J., GAŹDZICKI A., IWANOW A., KRAJEWSKI K., WÓJCIK K. 1985 - Jurassic and Cretaceous lithostratigraphic units of the Tatra Mountains. Stud. Geol. Pol., 84: 7-93.
  • 34. LI Y.-H., SCHOONMAKER J.E. 2003 - Chemical Compositions and Mineralogy of Marine Sediments. Treatise Geochem., 7: 1-35.
  • 35. LODOWSKI D.G 2023 - Praca doktorska „Zapis zmian paleośrodowiska pogranicza jury i kredy Karpat w świetle badań sedymentologicznych, paleomagnetycznych i geochemicznych”. UW, Wydz. Geol., praca niepubl.
  • 36. LODOWSKI D.G., GRABOWSKI J. 2023 - Tracing the latest Jurassic-earliest Cretaceous paleoenvironment evolution in swell carbonate facies: a case study of the High-Tatric succession (Central Western Carpathians, Tatra Mts, Poland). Acta Geol. Pol., 74; doi: 10.24425/agp.2023.145629
  • 37. LODOWSKI D.G., PSZCZÓŁKOWSKI A., SZIVES O., FÖZY I., GRABOWSKI J. 2022a - Jurassic-Cretaceous transition in the Transdanubian Range (Hungary): integrated stratigraphy and paleomagnetic study oft he Hárskút and Lókútsections. Newslet. Stratigraph., 55: 99-135.
  • 38. LODOWSKI D.G., PSZCZÓŁKOWSKI A., WILAMOWSKI A., GRABOWSKI J. 2022b - The Jurassic-Cretaceous transition in the High-Tatric succession (Giewont Unit, Western Tatra Mts, Poland): integrated stratigraphy and microfacies. Acta Geol. Pol., 72: 107-135.
  • 39. MATTIOLI E., PITTET B., RIQUIER L., GROSSI V. 2014 - The mid-Valanginian Weissert Event as recorded by calcareous nannoplank- ton in the Vocontian Basin. Palaeogeograph., Palaeoclimatolog., Palaeoecolog., 414: 472-485.
  • 40. MICHALÍK J., REHÁKOVA D., HALÁSOVÁ E., LINTNEROVÁ O. 2009 - The Brodno section - a potential regional stratotype of the Jurassic/Cretaceous boundary (Western Carpathians). Geol. Carpath., 60: 213-232.
  • 41. MICHALÍK J., GRABOWSKI J., LINTNEROVÁ O., REHÁKOVÁ D., KDÝR Š., SCHNABL P. 2021 - Jurassic-Cretaceous boundary record in Carpathian sedimentary sequences. Cretaceous Res., 118: 104659.
  • 42. MISSONI S., GAWLICK H.-J. 2010 - Jurassic mountain building and Mesozoic-Cenozoic geodynamic evolution of the Northern Calcareous Alps as proven in the Berchtesgaden Alps (Germany). Facies, 57: 137-186.
  • 43. MISSONI S., GAWLICK H.-J. 2011 - Evidence for Jurassic subduction from the Northern Calcareous Alps (Berchtesgaden; Austroalpine, Germany). Internat. J. Earth Sci., 100: 1605-1631.
  • 44. MORALES C., GARDIN S., SCHNYDER J., SPANGENBERG J., ARNAUD-VANNEAU A., ARNAUD H., ADATTE T., FÖLLMI K.B. 2013 - Berriasian and early Valanginian environmental change along a transect from the Jura Platform to the Vocontian Basin. Sedimentolog., 60: 36-63.
  • 45. NESBITT H.W., YOUNG G.M. 1982 - Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299:715-717.
  • 46. NIKOLOV T., MINKOVSKAV. 2012 - The Lower Cretaceous in Bulgaria: a review. Revue de Paléobiologie, Geneve, 11: 77-87.
  • 47. PSZCZÓŁKOWSKI A. 2018 - Upper Jurassic bacteria from the Raptawicka Turnia Limestone Formation in the Mały Giewont area (Western Tatra Mountains, Poland). Geol. Quart., 62: 840-857.
  • 48. PSZCZÓŁKOWSKI A., GRABOWSKI J., WILAMOWSKI A. 2016 - Integrated biostratigraphy and carbon isotope stratigraphy of the Upper Jurassic shallow water carbonates of the High-Tatric Unit (Mały Giewont area, Western Tatra Mountains, Poland). Geol. Quart., 60: 893-918.
  • 49. RAMEIL N. 2005 - Carbonate sedimentology, sequence stratigraphy, and cyclostratigraphy of the Tithonian in the Swiss and French Jura Mountains. Ahigh-resolution record of changes in sea level and climate. PhD thesis. GeoFocus, 13.
  • 50. SCHETTINOA., TURCO E.2011 - Tectonic history of the western Tethys since the Late Triassic. Geol. Soc. Amer. Bull., 123: 89-105.
  • 51. SCHMID S.M., BERNOULLI D., FÜGENSCHUH B., MATENCO L., SCHEFER S., SCHUSTER R., TISCHLER M., USTASZEWSKI K. 2008 - The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J. Geosci., 101: 139-183.
  • 52. SCHNEIDER A.C., HEIMHOFER U., HEUNISCH C., MUTTERLOSE J. 2018 - From arid to humid - The Jurassic-Cretaceous boundary interval in northern Germany. Rev. Paleobot. Palynolog., 255: 57-69.
  • 53. SCHNEIDER S., KELLY S.R.A., MUTTERLOSE J., HERRLE J.O., HÜLSE P., JOLLEY D.W., SCHRÖDER-ADAMS C.J., LOPEZ-MIR B. 2020 - Macrofauna and bio stratigraphy of the Rollrock Section, northern Ellesmere Island, Canadian Arctic Islands - a comprehensive high latitude archive of the Jurassic-Cretaceous transition. Cretaceous Res., 114: 104508.
  • 54. SCHNYDER J., GORING., SOUSSI M., BAUDIN F., DECONINCK J.-F. 2005 - A record of the Jurassic/Cretaceous boundary climatic variation on the southern margin of the Tethys: clay minerals and palynofacies of the early Cretaceous Jebel Meloussi section (central Tunisia, Sidi Kralif Formation) Bull. Soc. Geol. France, 176: 171-182.
  • 55. SCHNYDER J., RUFFEL A., DECONINCK J.-F., BAUDIN F. 2006 - Conjuctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic-early Cretaceous paleoclimate change (Dorset, U.K.). Palaeogeograph., Palaeoclimatolog., Palaeoecolog., 229: 303-320.
  • 56. STAMPFLI G.M., HOCHARD C. 2009 - Plate tectonics of the Alpine realm. Geol. Soc., London, Spec. Publ., 327: 89-111.
  • 57. SZEDERKÉNYI T., HAAS J., NAGYMAROSYA., HÁMORG. 2013 - Geology and History of Evolution of the ALCAPAMega-Unit. In: Haas, J. (Ed.), Geology of Hungary, 244 pp. Springer; Heidelberg, New York, Dordrecht, London.
  • 58. SZIVES O., FÖZY I. 2022 - Towards the ammonite zonation of the Jurassic/Cretaceous transition: new data from ammonitico rosso/Biancone sections of the Transdanubian Range (Hungary). Newslet. Stratigraph., 55:385-426.
  • 59. TENNANT J.P., MANNION P.D., UPCHURCH P., SUTTON M.D., PRICE G.D. 2016- Biotic and environmental dynamics through the Late Jurassic-Early Cretaceous transition: evidence for protracted faunal and ecological turnover. Biol. Rev , 1; doi: 10.1111/brv.12255.0
  • 60. TREMOLADA F., BORNEMANN A., BRALOWER T.J., KOEBERL C., VAN DE SCHOOTBRUGGE B. 2006 - Paleoceanographic changes across the Jurassic/Cretaceous boundary: The calcareous phytoplankton response. Earth Planet. Sci. Lett., 241: 361-371.
  • 61. TRIBOVILLARD N., ALGEO T.J., LYONS T., RIBOULLEAUA. 2006 - Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol., 232: 12-32.
  • 62. TRUJILLO A.P., THURMAN H.V. 2011- Essentials of Oceanography. Tenth Edition. 551pp. Prentice Hall, Boston.
  • 63. VÖRÖS A., GALÁCZ A. 1998 - Jurassic palaeogeography of the Transdanubian Central Range. Rivisit. Ital. Paleontolog. Stratigraf., 104: 69-83.
  • 64. WEISSERT H., ERBA E. 2004 - Volcanism, CO2 and palaeoclimate: a Late Jurassic-Early Cretaceous carbon and oxygen isotope record. J. Geol. Soc., London, 161: 695-702.
  • 65. WIGNALL P.B., RUFFEL A.H. 1990 - The influence of a sudden climatic change on marine deposition in the Kimmeridgian of northwest Europe. J. Geol. Soc., London, 147, 365-371.
Uwagi
Konferencja Naukowa z cyklu Zmiany klimatyczne w przeszłości geologicznej – Warszawa, 22–23.11.2023 r.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3520c2c5-6e7d-481c-b2a4-ba5f987c6055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.