PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Early Devonian sinistral shearing recorded by retrograde monazite-(Ce) in Oscar II Land, Svalbard

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Southwestern Basement Province of Svalbard extends northward from Sørkapp Land in the south to Oscar II Land. In the north, the Müllerneset Formation characterized by polymetamorphosed Proterozoic sedimentary rocks crops out. In this study we used an integrated tectonic and petrochronological approach to gain an insight into the structural and metamorphic evolution of the unit and surrounding basement. The Müllerneset Formation consists of two separate tectonic blocks. NNW-SSE trending retrograde foliation is associated with mineral and stretching lineation and kinematic indicators consistent with left-lateral to oblique sinistral shearing in the western block. The eastern block is characterized by the opposite sense of shear that was overturned during the Eurekan event as evidenced by unconformably overlaying Carboniferous sedimentary rocks. Conventional geothermobarometry yields the prograde peak pressure metamorphic conditions of 6.6 - 7.1 kbar at 480 - 520°C followed by peak temperature at 5.1 - 5.9 kbar and 530 - 560°C. Subsequent retrograde greenschist facies overprint is related to left-lateral NNW-SSE trending shearing. Tiny monazite occurs within foliation or overgrows allanite-(Ce), thus is interpreted as growth along a retrograde path. Th-U-total Pb dating of monazite-(Ce) provided an early Caledonian age (ca. 450 Ma) and younger population of ca. 410 ± 8 Ma. This age is consistent with previously reported 40Ar/39Ar cooling ages (410 ± 2 Ma) of muscovite supporting a retrograde growth of monazite. Petrochronological evidence combined with structural observations suggests that the Müllerneset Formation has been tectonically exhumed in the Early Devonian due to the NNW-SSE trending left-lateral shearing. Coeval folding and thrusting in the remaining basement of Oscar II Land to the east indicate a transpressional regime of the deformation in the Early Devonian. Similarly oriented contemporaneous tectonic zones within the Southwestern Basement Province of Svalbard may account for the same set of shear zones dispersing the Ordovician subduction complexes along western Spitsbergen.
Czasopismo
Rocznik
Strony
82--108
Opis fizyczny
Bibliogr. 100 poz., rys., tab., wykr.
Twórcy
  • Institute of Geological Sciences, University of Wrocław, Pl. M. Borna 9, 50-204 Wrocław, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Uppsala University, Department of Earth Sciences, Villavägen 16, 752 36 Uppsala, Sweden
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • Ague, J. J., & Morris, A. P. (1985). Metamorphism of the Mullerneset Formation, St. Jonsfjorden, Svalbard. Polar Research, 3(1), 93-106. DOI: 10.3402/polar.v3i1.6941.
  • Barnes, C. J., Walczak, K., Janots, E., Schneider, D., & Majka, J. (2020). Timing of Paleozoic Exhumation and Deformation of the High-Pressure Vestgӧtabreen Complex at the Motalafjella Nunatak, Svalbard. Minerals, 10(2), 125. DOI: 10.3390/min10020125.
  • Bazarnik, J., Majka, J., McClelland, W. C., Strauss, J. V., Kośmińska, K., Piepjohn, K., Elvevold, S., Czupyt, Z., & Mikuš, T. (2019). U‐Pb zircon dating of metaigneous rocks from the Nordbreen Nappe of Svalbard’s Ny‐Friesland suggests their affinity to Northeast Greenland. Terra Nova, 31(6), 518-526. DOI: 10.1111/ter.12422.
  • Braathen, A., Bergh, S. G., & Maher Jr, H. D. (1999). Application of a critical wedge taper model to the Tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard. Geological Society of America Bulletin, 111(10), 1468-1485. DOI: 10.1130/0016-7606(1999)111<1468:AOACWT>2.3.CO;2.
  • Dallmann, W. K. (2015). Geoscience atlas of Svalbard. Tromsø: Norsk Polarinstitutt.
  • Dallmeyer, R. D. (1989). Partial thermal resetting of 40Ar/39Ar mineral ages in western Spitsbergen, Svalbard: possible evidence for Tertiary metamorphism. Geological Magazine, 126(5), 587-593. DOI: 10.1017/S001675680002286X.
  • Dineley, D. L. (1958). A review of the Carboniferous and Permian rocks of the west coast of Vestspitsbergen. Norsk Geologisk Tidsskrift, 38, 197-217.
  • Elvevold, S., Ravna, E. J., Nasipuri, P., & Labrousse, L. (2014). Calculated phase equilibria for phengite-bearing eclogites from NW Spitsbergen, Svalbard Caledonides. Geological Society, London, Special Publications, 390(1), 385-401. DOI: 10.1144/SP390.4.
  • Engi, M. (2017). Petrochronology based on REE-minerals: monazite, allanite, xenotime, apatite. Reviews in Mineralogy and Geochemistry, 83(1), 365-418. DOI: 10.2138/rmg.2017.83.12.
  • Faehnrich, K., Majka, J., Schneider, D., Mazur, S., Manecki, M., Ziemniak, G., Wala, V. T., & Strauss, J. V. (2020). Geochronological constraints on Caledonian strike-slip displacement in Svalbard, with implications for the evolution of the Arctic. Terra Nova, 32(4), 290-299. DOI: 10.1111/ter.12461.
  • Finger, F., Broska, I., Haunschmid, B., Hrasko, L., Kohút, M., Krenn, E., & Uher, P. (2003). Electron-microprobe dating of monazites from Western Carpathian basement granitoids: plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anatexis. International Journal of Earth Sciences, 92(1), 86-98. DOI: 10.1007/s00531-002-0300-0.
  • Finger, F., Krenn, E., Schulz, B., Harlov, D., & Schiller, D. (2016). “Satellite monazites” in polymetamorphic basement rocks of the Alps: Their origin and petrological significance. American Mineralogist, 101(5), 1094-1103. DOI: 10.2138/am-2016-5477.
  • Foster, G., & Parrish, R. R. (2003). Metamorphic monazite and the generation of PTt paths. Geological Society, London, Special Publications, 220(1), 25-47. DOI: 10.1144/GSL.SP.2003.220.01.02.
  • Friend, C. R. L., Kinny, P. D., Rogers, G., Strachan, R. A., & Paterson, B. A. (1997). U-Pb zircon geochronological evidence for Neoproterozoic events in the Glenfinnan Group (Moine Supergroup): the formation of the Ardgour granite gneiss, northwest Scotland. Contributions to Mineralogy and Petrology, 128(2-3), 101-113. DOI: 10.1007/s004100050297.
  • Gasser, D., & Andresen, A. (2013). Caledonian terrane amalgamation of Svalbard: detrital zircon provenance of Mesoproterozoic to Carboniferous strata from Oscar II Land, western Spitsbergen. Geological Magazine, 150(6), 1103-1126. DOI: 10.1017/S0016756813000174.
  • Gee, D. G. (1986). Svalbard’s Caledonian terranes reviewed. Geologiska Föreningen i Stockholm Förhandlingar, 108(3), 284-286.
  • Gee, D. G., & Page, L. M. (1994). Caledonian terrane assembly on Svalbard; new evidence from 40Ar/39Ar dating in Ny Friesland. American Journal of Science, 294(9), 1166-1186. DOI: 10.2475/ajs.294.9.1166.
  • Gee, D. G., & Teben’kov, A. M. (2004). Svalbard: a fragment of the Laurentian margin. Geological Society, London, Memoirs, 30(1), 191-206. DOI: 10.1144/GSL.MEM.2004.030.01.16.
  • Gee, D. G., Fossen, H., Henriksen, N., & Higgins, A. K. (2008). From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes, 31(1), 44-51. DOI: 10.18814/epiiugs/2008/v31i1/007.
  • Guidotti, C. V., & Sassi F.P. (1986). Classification and correlation of metamorphic facies series by means of muscovite b(o) data from low-grade metapelites. Neues Jahrbuch fur Mineralogie Abhandlungen, 153, 363-380.
  • Hallett, B., McClelland, W., & Gilotti, J. (2014). The timing of strikeslip deformation along the Storstrømmen shear zone, Greenland Caledonides: U–Pb zircon and titanite geochronology. Geoscience Canada, 41(1), 19-45. DOI: 10.12789/geocanj.2014.41.038.
  • Harland, W. B. (1960). The Cambridge Svalbard Expedition, 1959. Polar Record, 10, 40-44.
  • Harland, W. B. (1969). Contribution of Spitsbergen to Understanding of Tectonic Evolution of North Atlantic Region: Chapter 58: Arctic Regions. In Kay, Marshall. North Atlantic—geology and continental drift (pp 817-851). Tulsa, Oklahoma, U.S.A.: American Association of Petroleum Geologists. DOI: 10.1306/M12367.
  • Harland, W. B. (1972). Early Palaeozoic faults as margins of Arctic plates in Svalbard. In International Geological Congress. Twenty-fourth session. Section (Vol. 3, pp. 230-237).
  • Harland, W. B. (1997). Proto-basement in Svalbard. Geological Society, London, Memoirs, 17(1), 3-15.
  • Harland, W. B., & Gayer, R. A. (1972). The Arctic Caledonides and earlier oceans. Geological Magazine, 109(4), 289-314. DOI: 10.1017/S0016756800037717.
  • Harland, W. B., & Wright, N. J. R. (1979). Alternative hypothesis for the pre-Carboniferous evolution of Svalbard. Norsk Polarinstitutt Skrifter, 167, 89-117.
  • Harland, W. B., Hambrey, M. J., & Waddams, P. (1993). Vendian geology of Svalbard. Norsk Polarinstitutt. Oslo: Skrifter.
  • Henry, D. J., & Guidotti, C. V. (2002). Titanium in biotite from metapelitic rocks: Temperature effects, crystal-chemical controls, and petrologic applications. American Mineralogist, 87(4), 375-382. DOI: 10.2138/am-2002-0401.
  • Higgins, A. K. (1976). Pre-Caledonian metamorphic complexes within the southern part of the East Greenland Caledonides. Journal of the Geological Society, 132(3), 289-305. DOI: 10.1144/gsjgs.132.3.028.
  • Hirajima, T., Banno, S., Hiroi, Y., & Ohta, Y. (1988). Phase petrology of eclogites and related rocks from the Motalafjella high-pressure metamorphic complex in Spitsbergen (Arctic Ocean) and its significance. Lithos, 22(2), 75-97. DOI: 10.1016/0024-4937(88)90018-7.
  • Hjelle, A., Ohta, Y., & Winsnes, S. (1979). Hecla Hoek rocks of Oscar II Land and Prins Karls Forland, Svalbard. Norsk Polarinstitutt Skrifter, 167, 145-170.
  • Holdaway, M. J. (2001). Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86(10), 1117-1129. DOI: 10.2138/am-2001-1001.
  • Holdsworth, R. E., & Strachan, R. A. (1991). Interlinked system of ductile strike slip and thrusting formed by Caledonian sinistral transpression in northeastern Greenland. Geology, 19(5), 510-513. DOI: 10.1130/0091-7613(1991)019<0510:ISODSS>2.3.CO;2.
  • Hollister, L. S. (1966). Garnet zoning: an interpretation based on the Rayleigh fractionation model. Science, 154(3757), 1647-1651. DOI: 10.1126/science.154.3757.1647.
  • Horsfield, W. T. (1972). Glaucophane schists of Caledonian age from Spitsbergen. Geological Magazine, 109(1), 29-36. DOI: 10.1017/S0016756800042242.
  • Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J. O., & Spandler, C. (2008). Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite-xenotime phase relations from 250 to 610°C. Journal of Metamorphic Geology, 26(5), 509-526. DOI: 10.1111/j.1525-1314.2008.00774.x.
  • Janots, E., Negro, F., Brunet, F., Goffé, B., Engi, M., & Bouybaouène, M. L. (2006). Evolution of the REE mineralogy in HP-LT metapelites of the Sebtide complex, Rif, Morocco: monazite stability and geochronology. Lithos, 87(3-4), 214-234. DOI: 10.1016/j.lithos.2005.06.008.
  • Johansson, Å., Gee, D. G., Björklund, L., & Witt-Nilsson, P. (1995). Isotope studies of granitoids from the Bangenhuk formation, Ny Friesland Caledonides, Svalbard. Geological Magazine, 132(3), 303-320. DOI: 10.1017/S0016756800013625.
  • Kanat, L., & Morris, A. (1988). A working stratigraphy for central western Oscar II Land, Spitsbergen. Oslo: Norsk Polarinstitutt. Skrifter.
  • Kelsey, D. E., Clark, C., & Hand, M. (2008). Thermobarometric modelling of zircon and monazite growth in melt‐bearing systems: Examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology, 26(2), 199-212. DOI: 10.1111/j.1525-1314.2007.00757.x.
  • Kirkland, C. L., Daly, J. S., Eide, E. A., & Whitehouse, M. J. (2006). The structure and timing of lateral escape during the Scandian Orogeny: a combined strain and geochronological investigation in Finnmark, Arctic Norwegian Caledonides. Tectonophysics, 425(1-4), 159-189. DOI: 10.1016/j.tecto.2006.08.001.
  • Koglin, N., Läufer, A., Piepjohn, K., Gerdes, A., Davis, D. W., Linnemann, U., & Estrada, S. (2022). Palaeozoic sedimentation and Caledonian terrane architecture in northwest Svalbard: Indications from U-Pb geochronology and structural analysis. Journal of the Geological Society, 179(4), jgs2021-053. DOI: 10.1144/jgs2021-053.
  • Konečný, P., Kusiak, M.A., & Dunkley, D.J. (2018). Improving U-ThPb electron microprobe dating using monazite age references. Chemical Geology 484, 22-35. DOI: 10.1016/j.chemgeo.2018.02.014.
  • Konečný, P., Siman, P., Holický, I., Janák, M., & Kollárová, V. (2004). Method of monazite dating by means of the microprobe. Mineralia Slovaca, 36, 225-235.
  • Kośmińska, K., Majka, J., Mazur, S., Krumbholz, M., Klonowska, I., Manecki, M., Czerny, J., & Dwornik, M. (2014). Blueschist facies metamorphism in Nordenskiöld Land of west‐central Svalbard. Terra Nova, 26(5), 377-386. DOI: 10.1111/ter.12110.
  • Kośmińska, K., Spear, F. S., Majka, J., Faehnrich, K., Manecki, M., Piepjohn, K., & Dallmann, W. K. (2020). Deciphering late Devonian-early Carboniferous P-T-t path of mylonitized garnet‐mica schists from Prins Karls Forland, Svalbard. Journal of Metamorphic Geology, 38(5), 471-493. DOI: 10.1111/jmg.12529.
  • Kośmińska, K., Gilotti, J. A., McClelland, W. C., Coble, M. A., & Thomas, J. B. (2022). P–T–t path of unusual garnet–kyanite–staurolite–amphibole schists, Ellesmere Island, Canada—Quartz inclusion in garnet barometry and monazite petrochronology. Journal of Petrology, 63(8), egac068. DOI: 10.1093/petrology/egac068.
  • Krasil’ščikov, A. A., Kubanskij, A. P., & Ohta, Y. (1995). Surface magnetic anomaly study on the eastern part of the Forlandsundet Graben. Polar Research, 14(1), 55-68. DOI: 10.3402/polar.v14i1.6651.
  • Krenn, E., & Finger, F. (2007). Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece: Microprobe data and geochronological implications. Lithos, 95(1-2), 130-147. DOI: 10.1016/j.lithos.2006.07.007.
  • Krenn, E., Ustaszewski, K., & Finger, F. (2008). Detrital and newly formed metamorphic monazite in amphibolite-facies metapelites from the Motajica Massif, Bosnia. Chemical Geology, 254(3-4), 164-174. DOI: 10.1016/j.chemgeo.2008.03.012.
  • Labrousse, L., Elvevold, S., Lepvrier, C., & Agard, P. (2008). Structural analysis of high‐pressure metamorphic rocks of Svalbard: Reconstructing the early stages of the Caledonian orogeny. Tectonics, 27(5). DOI: 10.1029/2007TC002249.
  • Lanari, P., Vho, A., Bovay, T., Airaghi, L., & Centrella S. (2019). Quantitative compositional mapping of mineral phases by electron probe micro-analyser. Geological Society of London, Special Publications, 478(1), 39-63. DOI: 10.1144/SP478.4.
  • Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E. G., & Schwartz, S. (2014). XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Computers and Geosciences, 62, 227- 240. DOI: 10.1016/j.cageo.2013.08.010.
  • Lyberis, N., & Manby, G. (1999). Continental collision and lateral escape deformation in the lower and upper crust: an example from Caledonide Svalbard. Tectonics, 18(1), 40-63. DOI: 10.1029/1998TC900013.
  • Maher Jr, H. D., Bergh, S., Braathen, A., & Ohta, Y. (1997). Svartfjella, Eidembukta, and Daudmannsodden lineament: Tertiary orogen‐parallel motion in the crystalline hinterland of Spitsbergen’s fold‐thrust belt. Tectonics, 16(1), 88-106. DOI: 10.1029/96TC02616.
  • Majka, J., & Kośmińska, K. (2017). Magmatic and metamorphic events recorded within the Southwestern Basement Province of Svalbard. Arktos, 3(1), 1-7. DOI: 10.1007/s41063-017-0034-7.
  • Majka, J., Be’eri-Shlevin, Y., Gee, D., Czerny, J., Frei, D., & Ladenberger, A. (2014). Torellian (c. 640 Ma) metamorphic overprint of Tonian (c. 950 Ma) basement in the Caledonides of southwestern Svalbard. Geological Magazine, 151(4), 732-748. DOI: 10.1017/S0016756813000794.
  • Majka, J., Kośmińska, K., Mazur, S., Czerny, J., Piepjohn, K., Dwornik, M., & Manecki, M. (2015). Two garnet growth events in polymetamorphic rocks in southwest Spitsbergen, Norway: insight in the history of Neoproterozoic and early Paleozoic metamorphism in the High Arctic. Canadian Journal of Earth Sciences, 52(12), 1045-1061. DOI: 10.1139/cjes-2015-0142.
  • Majka, J., Mazur, S., Manecki, M., Czerny, J., & Holm, D. K. (2008). Late Neoproterozoic amphibolite-facies metamorphism of a pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: New evidence from U-Th-Pb dating of monazite. Geological Magazine, 145(6), 822-830. DOI: 10.1017/S001675680800530X.
  • Manby, G. (2014). Deciphering the tectonic evolution of the Prins Karls Forland-Oscar II Land Caledonide domain of Svalbard. In W. K. Dallmann, M. Manecki, K. Michalski, & P. Głowacki (Eds). SVALGEOBASE: Proterozoic and Lower Palaeozoic basement of Svalbard-state of knowledge and new perspectives of investigations. Workshop report (p. 23). Tromsø, Norway: Norsk Polarinstitutt.
  • Manby, G. M. (1986). Mid-Palaeozoic metamorphism and polyphase deformation of the Forland Complex, Svalbard. Geological Magazine, 123(6), 651-663. DOI: 10.1017/S001675680002416X.
  • Mazur, S., Czerny, J., Majka, J., Manecki, M., Holm, D., Smyrak, A., & Wypych, A. (2009). A strike-slip terrane boundary in Wedel Jarlsberg Land, Svalbard, and its bearing on correlations of SW Spitsbergen with the Pearya terrane and Timanide belt. Journal of the Geological Society, 166(3), 529-544. DOI: 10.1144/0016-76492008-106.
  • McCann, A. J. (2000). Deformation of the Old Red Sandstone of NW Spitsbergen; links to the Ellesmerian and Caledonian orogenies. Geological Society, London, Special Publications, 180(1), 567-584. DOI: 10.1144/GSL.SP.2000.180.01.30.
  • McClelland, W. C., Malone, S. J., von Gosen, W., Piepjohn, K., & Läufer, A. (2012). The timing of sinistral displacement of the Pearya Terrane along the Canadian Arctic Margin. Zeitschrift der deutschen Gesellschaft fuer Geowissenschaften, 163(3), 251-259. DOI: 10.1127/1860-1804/2012/0163-0251.
  • McClelland, W. C., Strauss, J. V., Colpron, M., Gilotti, J. A., Faehnrich, K., Malone, S. J., Gehrels, G. E., Macdonald, F. A., & Oldow, J. S. (2021). Taters versus Sliders: Evidence for a Long-Lived History of Strike-Slip Displacement along the Canadian Arctic Transform System (CATS). GSA Today, 31(7), 4–11. DOI: 10.1130/GSATG500A.1.
  • Michalski, K., Domańska-Siuda, J., Nejbert, K., & Manby, G. (2014). New palaeomagnetic data from metamorphosed carbonates of Western Oscar II Land, Western Spitsbergen. Polish Polar Research, 4, 553-592. DOI: 10.24425/118738.
  • Michalski, K., Lewandowski, M., & Manby, G. (2012). New palaeomagnetic, petrographic and 40Ar/39Ar data to test palaeogeographic reconstructions of Caledonide Svalbard. Geological Magazine, 149(4), 696-721. DOI: 10.1017/S0016756811000835.
  • Montel, J. M., Foret, S., Veschambre, M., Nicollet, C., & Provost, A. (1996). Electron microprobe dating of monazite. Chemical Geology, 131(1-4), 37-53. DOI: 10.1016/0009-2541(96)00024-1.
  • Morris, A. (1988). Polyphase deformation in Oscar II Land, central western Svalbard. Polar Research, 6(1), 69-84. DOI: 10.3402/polar.v6i1.6847.
  • Mulch, A., & Cosca, M. A. (2004). Recrystallization or cooling ages: in situ UV-laser 40Ar/39Ar geochronology of muscovite in mylonitic rocks. Journal of the Geological Society, 161(4), 573-582. DOI: 10.1144/0016-764903-110.
  • Ohta, Y. (1979). Blueschists from Motalafjella, western Spitsbergen. Norsk Polarinstitutt Skrifter, 167, 171-217.
  • Ohta, Y. (1985). Geochemistry of Precambrian basic igneous rocks between St. Jonsfjorden and Isfjorden, central western Spitsbergen, Svalbard. Polar Research, 3(1), 49-67. DOI: 10.1111/j.1751-8369.1985.tb00494.x.
  • Ohta, Y. (1994). Caledonian and Precambrian history in Svalbard: a review, and an implication of escape tectonics. Tectonophysics, 231(1-3), 183-194. DOI: 10.1016/0040-1951(94)90129-5.
  • Ohta, Y., Dallmeyer, R. D., & Peucat, J. J. (1989). Caledonian terranes in Svalbard. In R.D. Dallmeyer (Ed.), Terranes in the Circum-Atlantic Paleozoic Orogens (1-15). Boulder, CO, United States: Geological Society of America. DOI: 10.1130/SPE230-p1.
  • Ohta, Y., Hiroi, Y., & Hirajima, T. (1983). Additional evidence of pre-Silurian high-pressure metamorphic rocks in Spitsbergen. Polar Research, 1(2), 215-218. DOI: 10.3402/polar.v1i2.6986.
  • Ohta, Y., Krasil’šikov, A. A., Lepvrier, C., & Teben’kov, A. M. (1995). Northern continuation of Caledonian high-pressure metamorphic rocks in central-western Spitsbergen. Polar Research, 14(3), 303-316. DOI: 10.3402/polar.v14i3.6670.
  • Palin, R. M., Searle, M. P., St-Onge, M. R., Waters, D. J., Roberts, N. M. W., Horstwood, M. S. A., Parish, R. R., & Weller, O. M. (2015). Two-stage cooling history of pelitic and semi-pelitic mylonite (sensu lato) from the Dongjiu-Milin shear zone, northwest flank of the eastern Himalayan syntaxis. Gondwana Research, 28(2), 509-530. DOI: 10.1016/j.gr.2014.07.009.
  • Pan, Y. (1997). Zircon-and monazite-forming metamorphic reactions at Manitouwadge, Ontario. The Canadian Mineralogist, 35(1), 105-118.
  • Petrík, I., & Konečný, P. (2009). Metasomatic replacement of inherited metamorphic monazite in a biotite-garnet granite from the Nízke Tatry Mountains, Western Carpathians, Slovakia: Chemical dating and evidence for disequilibrium melting. American Mineralogist, 94(7), 957-974. DOI: 10.2138/am.2009.2992.
  • Piepjohn, K., & Thiedig, F. (1995). Tektonische Entwicklung des kristallinen Basements im Liefdefjorden-Gebiet, NW-Svalbard. (Tectonic development of crystalline basements in the Liefdefjorden area, north-west Spitsbergen.) Münstersche Forschungen zur Geologie und Paläontologie, 77, 1-25.
  • Piepjohn, K., Griem-Klee, S., Post, H., Post, J., & Thiedig, F. (2000). Geology and structural evolution of pre-Caledonian rocks and the? Devonian Sutorfjella conglomerate, northern Prins Karls Forland (Svalbard). Norsk Geologisk Tidsskrift, 80(2), 83-95. DOI: 10.1080/002919600750042582.
  • Piepjohn, K., von Gosen, W., & Tessensohn, F. (2016). The Eurekan deformation in the Arctic: an outline. Journal of the Geological Society, 173(6), 1007-1024. DOI: 10.1144/jgs2016-081.
  • Ratliff, R., Morris, A., & Dodt, M. (1988). Interaction between strikeslip and thrust-shear: deformation of the Bullbreen Group, central-western Spitsbergen. The Journal of Geology, 96(3), 339-349. DOI: 10.1086/629224.
  • Savko, K. A., & Bazikov, N. S. (2011). Phase equilibria of bastnaesite, allanite, and monazite: Bastnaesite-out isograde in metapelites of the Vorontsovskaya group, Voronezh crystalline massif. Petrology, 19(5), 445-469. DOI: 10.1134/S0869591111030076.
  • Scrutton, C. T., Horsfield, W. T., & Harland, W. B. (1976). Silurian fossils from western Spitsbergen. Geological Magazine, 113(6), 519-523. DOI: 10.1017/S0016756800041261.
  • Seydoux-Guillaume, A. M., Deschanels, X., Baumier, C., Neumeier, S., Weber, W. J., & Peuget, S. (2018). Why natural monazite never becomes amorphous: Experimental evidence for alpha self-healing. American Mineralogist, 103(5), 824-827. DOI: 10.2138/am-2018-6447.
  • Spear, F. S. (2010). Monazite-allanite phase relations in metapelites. Chemical Geology, 279(1-2), 55-62. DOI: 10.1016/j.chemgeo.2010.10.004.
  • Tessensohn, F., von Gosen, W., & Piepjohn, K. (2001). Permo-Carboniferous slivers infolded in the basement of Western Oscar II Land. Geologisches Jahrbuch Reihe B91, 161-204.
  • Tracy, R. J., Robinson, P., & Thompson, A. B. (1976). Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. American Mineralogist, 61(7-8), 762-775.
  • Trettin, H. P. (1987). Pearya: a composite terrane with Caledonian affinities in northern Ellesmere Island. Canadian Journal of Earth Sciences, 24(2), 224-245. DOI: 10.1139/e87-025.
  • Trettin, H. P. (1998). Geology of Pearya, in Pre-Carboniferous geology of the northern part of the Arctic Islands: Northern Heiberg Fold Belt, Clements Markham Fold Belt, and Pearya; northern Axel Heiberg and Ellesmere islands. Geological Survey of Canada Bulletin, 425, 108-192.
  • Tursi, F. (2022). The key role of µH2O gradients in deciphering microstructures and mineral assemblages of mylonites: Examples from the Calabria polymetamorphic terrane. Mineralogy andPetrology, 116(1), 1-14. DOI: 10.1007/s00710-021-00766-8.
  • Tyrell, G. W. (1924). The geology of Prince Charles’ Foreland, Spitsbergen. Royal Geological Society of Edinburgh Transactions, 53, 443-478.
  • von Gosen, W., Piepjohn, K., McClelland, W. C., & Läufer, A. (2012). The Pearya shear zone in the Canadian High Arctic: Kinematics and significance. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 163(3), 233-249. DOI: 10.1127/1860-1804/2012/0163-0233.
  • Wala, V. T., Ziemniak, G., Majka, J., Faehnrich, K., McClelland, W. C., Meyer, E. E., Manecki, M., Bazarnik. J., & Strauss, J. V. (2021). Neoproterozoic stratigraphy of the Southwestern Basement Province, Svalbard (Norway): Constraints on the Proterozoic-Paleozoic evolution of the North Atlantic-Arctic Caledonides. Precambrian Research, 358, 106138. DOI: 10.1016/j.precamres.2021.106138.
  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187. DOI: 10.2138/am.2010.3371.
  • Wing, B. A., Ferry, J. M., & Harrison, T. M. (2003). Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology, 145(2), 228-250. DOI: 10.1007/s00410-003-0446-1.
  • Wu, C. M. (2019). Original calibration of a garnet geobarometer in metapelite. Minerals, 9(9), 540. DOI: 10.3390/min9090540.
  • Yang, P., & Pattison, D. (2006). Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota. Lithos, 88(1-4), 233-253. DOI: 10.1016/j.lithos.2005.08.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-351ce475-8fa9-4586-9a01-e8acdb1871c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.