PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation and Analysis of Electrospun Nonwoven Mats from Bicomponent PVA/Aqueous Propolis Nano-Microfibres

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Możliwość wytwarzania elektroprzędzionego runa z udziałem bursztynu
Języki publikacji
EN
Abstrakty
EN
Nowadays targeted drug delivery is one of the areas widely investigated in the biomedical application of modern technologies. Propolis is well known natural material because of its confirmed antimicrobial and anti-inflammatory activity, and for these reasons it could be considered as a candidate in developing wound healing textile materials. Electrospun bicomponent mats of poly(vinyl alcohol) (PVA) and aqueous propolis solution were manufactured and analysed in this study. It was observed that the concentration of phenolic acids in aqueous propolis solution or the amount of aqueous propolis in the electrospinning solution had no significant influence on the structure of electrospun mats. From bicomponent PVA/aqueous propolis solutions fewer nanofibres with a diameter of up to 100 nm were electrospun, nor from PVA solution containing no added substances. Analysis of phenolic compound release kinetics demonstrated that up to 86 - 96% of vanilic acid, caffeic acid, vanillin acid, p-coumaric acid and ferulic acid had been released from the electrospun PVA/aqueous propolis solution mats in 15 min. It was concluded that electrospun mats from biocomponent PVA/aqueous propolis nano-microfibres may be considered for developing a drug delivery system for local application.
PL
W ostatnich latach elektroprzędzenie znalazło zastosowanie i zostało opisane w literaturze jako proces dla wytwarzania nano i mikro włókien dla produkcji materiałów do zastosowań medycznych. Stosuje się różnego rodzaju modyfikujące dodatki jak srebro, miedź, skrobia dla uzyskania specyficznych właściwości. Bursztyn jest naturalnym materiałem wywierającym korzystny wpływ na zdrowie człowieka i gojenie ran. Jednakże, nie stwierdzono żadnych informacji dotyczących zastosowania cząstek bursztynu przy elektroprzędzeniu. W przedstawionej pracy rozpatrzono możliwość produkcji nanowłóknistych run poprzez przędzenie z roztworu PVA zawierającego dodatek cząstek bursztynu z zastosowaniem urządzenia Nanospider. Największe z cząstek bursztynu, które znalazły się w wyprzędzionych włóknach miały 50 μm, uważa się jednak, że optymalnym rozmiarem cząstek bursztynu są cząstki poniżej 10 μm.
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania
autor
  • Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania
autor
  • Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
autor
  • Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
Bibliografia
  • 1. Joshi M, Bhattacharyya A. Nanotechnology – a new route to high –performance functional textiles. Textile Progress 2011; 45 :156-226.
  • 2. Araujo ES, Nascimento MLF, de Oliveira HP. Influence of Triton X-100 on PVA fibers production by the electrospinning technique. Fibres & Textiles in Eastern Europe 2013; 4(100), 21: 39-43.
  • 3. Amiri P, Bahrami SH. Electrospinning of poly(acrylonitrile-acrylic acid)/β cyclodextrin nanofibers and study of their molecular filtration characteristics. Fibres & Textiles in Eastern Europe 2014; 1(103), 22 :14-21
  • 4. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release 2014; 185: 12-21.
  • 5. Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances 2010; 28: 325-347.
  • 6. Zhang Y, Lim CT, Ramakrishna S, Huang Z-M. Recent development of polymer nanofibres for biomedical and biotechnological applications. Journal of Materials Science: Materials in Medicine 2005; 16: 933-946.
  • 7. Sill TJ, Von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering Biomaterials 2008; 29: 1989-2006.
  • 8. Illangakoon UE, Gill H, Shearmann GC, et. al. Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. International Journal of Pharmaceutics 2014; 477: 369-379.
  • 9. Kim K, Luu Y.K, Chang C, Fang D, Hsiao B.S, Chu B, Hadjiargyrou M. Incorporation and Controlled Release of a Hydrophilic Antibiotic Using Poly(lactideco-glycolide)-based Electrospun Nanofibrous Scaffolds. Journal of Controlled Release 2004; 98: 47-56.
  • 10. Karuppuswamy P, Venugopal JR, Navaneethan B, Laiva AL, Ramakrishna S. Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride. Materials Letters 2015; 141: 180-186.
  • 11. Kataria K, Gupta A, Rat A, Mathur RB, Dhakate SR. In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. International Journal of Pharmaceutics 2014; 469: 102-110.
  • 12. Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P. Electrospun Cellulose Acetate Fiber Mats Containing Curcumin and Release Characteristic of the Herbal Substance. Polymer 2007; 48: 7546-7557.
  • 13. Matusevičiūtė A, Butkienė A, Adomavičiūtė E, Stanys S. Formation of PVA Nanofibres with Iodine By Electrospinning. Fibres & Textile in Eastern Europe 2012; 3(92), 20: 21-25.
  • 14. Kriegel C, Kit KM, McClements DJ, et. al. Nanofibres as Carrier Systems for Antimicrobial Microemulsions. Part I: Fabrications and Characterization. Langmuir 2009; 25: 1154-1161.
  • 15. Xiuling Xu, Xuesi Chen, Xiaoyi Xu, et. al. BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor acticity against Glioma C6 cells. Journal of Controlled Release 2006; 114: 307-316.
  • 16. Ping Chen, Qing-Sheng Wu, Ya-Ping Ding, et. al. A controlled realease ystem of titanocene dichloride by electrospun fiber and its antitumor activity in vitro. European Journal of Pharmaceutics and Biopharmaceutics 2010; 76: 413-420.
  • 17. Guiping Ma, Yang Liu, Cheng Peng, et. al. Paclitaxel loaded electrospun porous nanofibers as amat potential application for chemotherapy agains prostate cancer. Carbohydrate polymers 2011; 86: 505-512.
  • 18. Xu X, Chen X, Ma P, Wang Z, Jing X. The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. European Journal of Pharmaceutics and Biopharmaceutics 2008; 70: 165-170.
  • 19. Ramanauskiene K, Savickas A, Inkeniene A, Vitkevicius K, Kasparaviciene G, Briedis V, Amsiejus A. Analysis of content of phenolic acids in Lithuanian propolis using high-performance liquid chromatography technique. Medicina (Kaunas). 2009;45(9):712-7
  • 20. Nolkemper S, Reichling J, Sensch KH, Schnitzler P. Mechanism of herpes simplex virus type 2 suppression by propolis extracts. Phytomedicine 2010; 17(2):132-8.
  • 21. Gulcin I, Bursal E, Sehitoglu MH, Bilsel M, Goren AC. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem Toxicol. 2010; 48(8-9): 2227-2238.
  • 22. Khayyal MT, el-Ghazaly MA, el-Khatib AS. Mechanisms involved in the antiinflammatory effect of propolis extract. Drugs Exp Clin Res. 1993; 19(5): 197-203.
  • 23. El-Ghazaly MA, Khayyal MT. The use of aqueous propolis extract against radiationinduced damage. Drugs Exp Clin Res. 1995; 21(6): 229-36.
  • 24. Volpert R, Elstner EF. Biochemical activities of propolis extracts. I. Standardization and antioxidative properties of ethanolic and aqueous derivatives. Z Naturforsch C. 1993; 48(11-12): 851-857.
  • 25. Strehl E, Volpert R, Elstner EF. Biochemical activities of propolis-extracts. III. Inhibition of dihydrofolate reductase. Z Naturforsch C. 1994; 49(1-2): 39-43.
  • 26. Gulcin I, Bursal E, Sehitoglu MH, Bilsel M, Goren AC. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem Toxicol 2010; 48(8-9): 2227-2238.
  • 27. Laskar RA, Sk I, Roy N, Begum NA. Antioxidant activity of Indian propolis and its chemical constituents. Food Chemistry 2010; 122(1): 233-237.
  • 28. Drago L, De Vecchi E, Nicola L, and Gismondo MR. In vitro antimicrobial activity of a novel propolis formulation (Actichelated propolis). J. Appl. Microbiol. 2007; 103(5): 1914-1921.
  • 29. Hu F, Hepburn HR, Li Y, Chen M, Radloff SE, Daya S. Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models. J. Ethnopharmacol. 2005; 100(3): 276-283.
  • 30. Sosa S, Bornancin A, Tubaro A, Loggia RD. Topical antiinflammatory activity of an innovative aqueous formulation of actichelated propolis vs two commercial propolis formulations. Phytother. Res. 2007; 21(9): 823-826.
  • 31. Barlak Y, Deger O, Colak M, Karatayli SC, Bozdayi AM, and Yucesan F. Effect of Turkish propolis extracts on proteome of prostate cancer cell line. Proteome Sci. 2011; 9: 74.
  • 32. Asawahame C, Sutjarittangtham K, Eitssayeam S, Tragoolpua Y, Sirithunyalung B, Sirithunyalug J. Antibacterial Activity and Inhibition of adherence of Streptococcus mutans by propolis electrospun fibers. AAPS PharmSciTech 2015; 16(1): 182-191.
  • 33. Kim JI, Raj Pant H, Sim H-J, Lee KM, Kim CS. Electrospun propolis/polyurethane composite nanofibers for biomedical applications. Materials Science and Engineering C 2014; 44: 52-57.
  • 34. Huang W-Y, Cai Yi-Z, Zhang Y. Natural phenolic cmpounds from medicinal herbs and dietary plants:potential use for cancer prevention. Nutrition and Cancer 2010; 62(1): 1-20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-351c881a-559e-41af-94b0-5f0e89eed3c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.