PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sustainable Approaches to Plastics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Environmental concern and awareness have led to the development of different sustainable approaches to reduce the environmental impact of waste plastics. A brief literature review was conducted to evaluate recent challenges and emerging ideas on this topic. The two most noticeable approaches identified here are the introduction of biodegradable polymers as replacements for conventional plastics and recycling post-consumer waste plastics. The sustainable approach protects the environment, reducing energy consumption and greenhouse gas emissions.
Słowa kluczowe
Rocznik
Tom
Strony
128--140
Opis fizyczny
Bibliogr. 115 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
Bibliografia
  • Abd Al-Ghani, M.M., Azzam, R.A., Madkour, T.M. (2021). Design and Development of Enhanced Antimicrobial Breathable Biodegradable Polymeric Films for Food Packaging Applications. Polymers, 13(20), 3527. https://doi.org/10.3390/polym13203527
  • Alam, S.S., Churkunti, P.R., Depcik, C. (2022). Comparison of waste plastic fuel, waste cooking oil biodiesel, and ultra-low sulfur diesel using a Well-to-Exhaust framework. International Journal of Environmental Science and Technology, 19(7), 5857-5876. https://doi.org/10.1007/s13762-021-03552-3
  • Aldagari, S., Kabir, S.F., Fini, E.H. (2022). A comparative study on efficacy of waste plastic and waste Rubberin bitumen. Construction and Building Materials, 325, 126724. https://doi.org/10.1016/j.conbuildmat.2022.126724
  • Al-Hilifi, S.A., Al-Ibresam, O.T., Al-Hatim, R.R., Al-Ali, R.M., Maslekar, N., Yao, Y., Agarwal, V. (2023). Develop-ment of Chitosan/Whey Protein Hydrolysate Composite Films for Food Packaging Application. Journal of Composites Science, 7(3), 94. https://doi.org/10.3390/jcs7030094
  • Almeida, A., Capitão, S., Bandeira, R., Fonseca, M., Picado-Santos, L. (2020). Performance of AC mixtures containing flakes of LDPE plastic film collected from urban waste considering ageing. Construction and Building Materials, 232, 117253. https://doi.org/10.1016/j.conbuildmat.2019.117253
  • Alqahtani, F.K., Abotaleb, I.S., ElMenshawy, M. (2021). Life cycle cost analysis of lightweight green concrete utilizing recycled plastic aggregates. Journal of Building Engineering, 40, 102670. https://doi.org/10.1016/j.jobe.2021.102670
  • Andonegi, M., Heras, K.L., Santos-Vizcaíno, E., Igartua, M., Hernandez, R.M., de la Caba, K., Guerrero, P. (2020). Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydrate Polymers, 237, 116159. https://doi.org/10.1016/j.carbpol.2020.116159
  • Arcos-Hernandez, M.V., Pratt, S., Laycock, B., Johansson, P., Werker, A., Lant, P.A. (2013). Waste Activated Sludge as Biomass for Production of Commercial-Grade Polyhydroxyalkanoate (PHA). Waste and Biomass Valorization, 4(1), 117-127. https://doi.org/10.1007/s12649-012-9165-z
  • Awoyera, P.O., Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, e00330. https://doi.org/10.1016/j.cscm.2020.e00330
  • Babatunde, O.O., Cargo-Froom, C.L., Ai, Y., Newkirk, R.W., Marinangeli, C.P.F., Shoveller, A.K., Columbus, D.A. (2023). Extrusion effects on the starch and fibre composition of Canadian pulses. Canadian Journal of Animal Science. https://doi.org/10.1139/cjas-2022-0127
  • Baghaei, B., Skrifvars, M. (2020). All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications. Molecules, 25(12), 2836. https://doi.org/10.3390/molecules25122836
  • Balakrishnan, A., Appunni, S., Chinthala, M., Jacob, M.M., Vo, D.-V. N., Reddy, S.S., Kunnel, E.S. (2023). Chitosan-based beads as sustainable adsorbents for wastewater remediation: A review. Environmental Chemistry Letters, 21(3), 1881-1905. https://doi.org/10.1007/s10311-023-01563-9
  • Bari, A., Hussain, S., Hussain, M., Ali, N., Malik, A.A. (2021). Preparation and Characterization of Chitosan and Ethylene Glycol Based Chitosan Films. Journal of the Pakistan Institute of Chemical Engineers, 49(1), 21-32. https://doi.org/10.54693/piche.04913
  • Belmokaddem, M., Mahi, A., Senhadji, Y., Pekmezci, B.Y. (2020). Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate. Construction and Building Materials, 257, 119559. https://doi.org/10.1016/j.conbuildmat.2020.119559
  • Bikiaris, N.D., Koumentakou, I., Samiotaki, C., Meimaroglou, D., Varytimidou, D., Karatza, A., … Papageorgiou, G.Z. (2023). Recent Advances in the Investigation of Poly(lactic acid) (PLA) Nanocomposites: Incorporation of Various Nanofillers and their Properties and Applications. Polymers, 15(5), 1196. https://doi.org/10.3390/polym15051196
  • Brdlík, P., Novák, J., Borůvka, M., Běhálek, L., Lenfeld, P. (2023a). The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions. Polymers, 15(1), 140. https://doi.org/10.3390/polym15010140
  • Brdlík, P., Novák, J., Borůvka, M., Běhálek, L., Lenfeld, P. (2023b). The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions. Polymers, 15(1), 140. https://doi.org/10.3390/polym15010140
  • Burgada, F., Fages, E., Quiles-Carrillo, L., Lascano, D., Ivorra-Martinez, J., Arrieta, M.P., Fenollar, O. (2021). Upgrading Recycled Polypropylene from Textile Wastes in Wood Plastic Composites with Short Hemp Fiber. Polymers, 13(8), 1248. https://doi.org/10.3390/polym13081248
  • Chauhan, S., Raghu, N., Raj, A. (2021). Effect of maleic anhydride grafted polylactic acid concentration on mechanical and thermal properties of thermoplasticized starch filled polylactic acid blends. Polymers and Polymer Composites, 29(9_suppl), S400-S410. https://doi.org/10.1177/09673911211004194
  • Chi, K., Wang, H., Catchmark, J.M. (2020). Sustainable starch-based barrier coatings for packaging applications. Food Hydrocolloids, 103, 105696. https://doi.org/10.1016/j.foodhyd.2020.105696
  • Cui, X., Ozaki, A., Asoh, T.-A., Uyama, H. (2020). Cellulose modified by citric acid reinforced Poly(lactic acid) resin as fillers. Polymer Degradation and Stability, 175, 109118. https://doi.org/10.1016/j.polymdegradstab.2020.109118
  • Czechowski, L., Kedziora, S., Museyibov, E., Schlienz, M., Szatkowski, P., Szatkowska, M., Gralewski, J. (2022). Influence of UV Ageing on Properties of Printed PLA Containing Graphene Nanopowder. Materials, 15(22), 8135. https://doi.org/10.3390/ma15228135
  • Dai, L., Zhang, J., Cheng, F. (2020). Crosslinked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded Huangguan pears. Food Chemistry, 311, 125891. https://doi.org/10.1016/j.foodchem.2019.125891
  • Dao, D.N., Le, P.H., Do, D.X., Dang, T.M. Q., Nguyen, S.K., Nguyen, V. (2022). Pectin and cellulose extracted from coffee pulps and their potential in formulating biopolymer films. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02339-x
  • Das, H., Singh, S.K. (2004). Useful byproducts from cellulosic wastes of agriculture and food industry – A critical appraisal. Critical Reviews in Food Science and Nutrition, 44(2), 77-89. https://doi.org/10.1080/10408690490424630
  • De Paola, M.G., Paletta, R., Lopresto, C.G., Lio, G.E., De Luca, A., Chakraborty, S., Calabrò, V. (2021). Stability of Film-Forming Dispersions: Affects the Morphology and Optical Properties of Polymeric Films. Polymers, 13(9), 1464. https://doi.org/10.3390/polym13091464
  • DeStefano, V., Khan, S., Tabada, A. (2020). Applications of PLA in modern medicine. Engineered Regeneration, 1, 76-87. https://doi.org/10.1016/j.engreg.2020.08.002
  • Dorji, U., Dorji, P., Shon, H., Badeti, U., Dorji, C., Wangmo, C., … Phuntsho, S. (2022). On-site domestic wastewater treatment system using shredded waste plastic bottles as biofilter media: Pilot-scale study on effluent standards in Bhutan. Chemosphere, 286, 131729. https://doi.org/10.1016/j.chemosphere.2021.131729
  • Fahim, I., Mohsen, O., ElKayaly, D. (2021). Production of Fuel from Plastic Waste: A Feasible Business. Polymers, 13(6), 915. https://doi.org/10.3390/polym13060915
  • Fernandes, I. de A.A., Pedro, A.C., Ribeiro, V.R., Bortolini, D.G., Ozaki, M.S.C., Maciel, G.M., Haminiuk, C.W.I. (2020). Bacterial cellulose: From production optimization to new applications. International Journal of Biological Macromolecules, 164, 2598-2611. https://doi.org/10.1016/j.ijbiomac.2020.07.255
  • Fogašová, M., Figalla, S., Danišová, L., Medlenová, E., Hlaváčiková, S., Vanovčanová, Z., … Kadlečková, M. (2022). PLA/PHB-Based Materials Fully Biodegradable under Both Industrial and Home-Composting Conditions. Polymers, 14(19), 4113. https://doi.org/10.3390/polym14194113
  • Ganesh Saratale, R., Cho, S.-K., Dattatraya Saratale, G., Kadam, A. A., Ghodake, G. S., Kumar, M., … Seung Shin, H. (2021). A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresource Technology, 325, 124685. https://doi.org/10.1016/j.biortech.2021.124685
  • Ghodke, P.K., Sharma, A.K., Moorthy, K., Chen, W.-H., Patel, A., Matsakas, L. (2023). Experimental Investigation on Pyrolysis of Domestic Plastic Wastes for Fuel Grade Hydrocarbons. Processes, 11(1), 71. https://doi.org/10.3390/pr11010071
  • Gumienna, M., Górna, B. (2021). Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins. Molecules, 26(12), 3735. https://doi.org/10.3390/molecules26123735
  • Hadimani, S., Supriya, D., Roopa, K., Soujanya, S.K., Rakshata, V., Netravati, A., … Jogaiah, S. (2023). Biodegradable hybrid biopolymer film based on carboxy methyl cellulose and selenium nanoparticles with antifungal properties to enhance grapes shelf life. International Journal of Biological Macromolecules, 237, 124076. https://doi.org/10.1016/j.ijbiomac.2023.124076
  • Haider, S., Hafeez, I., Jamal, Ullah, R. (2020). Sustainable use of waste plastic modifiers to strengthen the adhesion properties of asphalt mixtures. Construction and Building Materials, 235, 117496. https://doi.org/10.1016/j.conbuildmat.2019.117496
  • Hakkarainen, M., Albertsson, A.-C., Karlsson, S. (1997). Susceptibility of starch-filled and starch-based LDPE to oxygen in water and air. Journal of Applied Polymer Science, 66(5), 959-967. https://doi.org/10.1002/(SICI)1097-4628(19971031)66:5<959::AID-APP15>3.0.CO;2-I
  • Halloran, M.W., Danielczak, L., Nicell, J.A., Leask, R.L., Marić, M. (2022). Highly Flexible Polylactide Food Packaging Plasticized with Non-toxic, Biosourced Glycerol Plasticizers. ACS Applied Polymer Materials, 4(5), 3608-3617. https://doi.org/10.1021/acsapm.2c00172
  • Han, J.H., Lee, J., Kim, S.K., Kang, D., Park, H.B., Shim, J.K. (2023). Impact of the Amylose/Amylopectin Ratio of Starch-Based Foams on Foaming Behavior, Mechanical Properties, and Thermal Insulation Performance. ACS Sustainable Chemistry & Engineering, 11(7), 2968-2977. https://doi.org/10.1021/acssuschemeng.2c06505
  • Hoc, D., Haznar-Garbacz, D. (2021). Foams as unique drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 167, 73-82. https://doi.org/10.1016/j.ejpb.2021.07.012
  • Hu, H., Xu, A., Zhang, D., Zhou, W., Peng, S., Zhao, X. (2020). High-Toughness Poly(lactic Acid)/Starch Blends Prepared through Reactive Blending Plasticization and Compatibilization. Molecules, 25(24), 5951. https://doi.org/10.3390/molecules25245951
  • Huang, X., Liu, H., Ma, Y., Mai, S., Li, C. (2022). Effects of Extrusion on Starch Molecular Degradation, Order–Disorder Structural Transition and Digestibility – A Review. Foods, 11(16), 2538. https://doi.org/10.3390/foods11162538
  • Ilyas, M., Khan, H., Ahmad, W. (2022). Conversion of waste plastics into carbonaceous adsorbents and their application for wastewater treatment. International Journal of Environmental Analytical Chemistry, 0(0), 1-19. https://doi.org/10.1080/03067319.2022.2062571
  • Jain, D., Bhadauria, S.S., Kushwah, S.S. (2022). An experimental study of utilization of plastic waste for manufacturing of composite construction material. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-04447-7
  • Jawaid, M., Singh, B., Kian, L.K., Zaki, S.A., Radzi, A.M. (2023). Processing techniques on plastic waste materials for construction and building applications. Current Opinion in Green and Sustainable Chemistry, 40, 100761. https://doi.org/10.1016/j.cogsc.2023.100761
  • Jiao, X., Zheng, K., Chen, Q., Li, X., Li, Y., Shao, W., … Xie, Y. (2020). Photocatalytic Conversion of Waste Plastics into C2 Fuels under Simulated Natural Environment Conditions. Angewandte Chemie International Edition, 59(36), 15497-15501. https://doi.org/10.1002/anie.201915766
  • Khan, M.I., Sutanto, M.H., Napiah, M.B., Khan, K., Rafiq, W. (2021). Design optimization and statistical modeling of cementitious grout containing irradiated plastic waste and silica fume using response surface methodology. Construction and Building Materials, 271, 121504. https://doi.org/10.1016/j.conbuildmat.2020.121504
  • Kosseva, M.R., Rusbandi, E. (2018). Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. International Journal of Biological Macromolecules, 107, 762-778. https://doi.org/10.1016/j.ijbiomac.2017.09.054
  • Krawczyk, B., Mackiewicz, P., Dobrucki, D. (2022). Use of plastic waste in materials for road pavement construction and improved subgrade. Roads and Bridges – Drogi i Mosty, 21(3), 203-216.
  • Kumar Jha, K., Kannan, T.T.M. (2021). Recycling of plastic waste into fuel by pyrolysis – A review. Materials Today: Proceedings, 37, 3718-3720. https://doi.org/10.1016/j.matpr.2020.10.181
  • Kumar Malik, M., Kumar, T., Kumar, V., Singh, J., Kumar Singh, R., Saini, K. (2022). Sustainable, highly foldable, eco-friendly films from Mandua starch derivative. Sustainable Energy Technologies and Assessments, 53, 102398. https://doi.org/10.1016/j.seta.2022.102398
  • Kumari, M., Chaudhary, G.R., Chaudhary, S., Umar, A. (2022). Transformation of solid plastic waste to activated carbon fibres for wastewater treatment. Chemosphere, 294, 133692. https://doi.org/10.1016/j.chemosphere.2022.133692
  • Li, H., A. Aguirre-Villegas, H., D. Allen, R., Bai, X., H. Benson, C., T. Beckham, G., … W. Huber, G. (2022). Expanding plastics recycling technologies: Chemical aspects, technology status and challenges. Green Chemistry, 24(23), 8899-9002. https://doi.org/10.1039/D2GC02588D
  • Li, X., Lin, Y., Liu, M., Meng, L., Li, C. (2023). A review of research and application of polylactic acid composites. Journal of Applied Polymer Science, 140(7), e53477. https://doi.org/10.1002/app.53477
  • Liu, J., Huang, J., Hu, Z., Li, G., Hu, L., Chen, X., Hu, Y. (2021). Chitosan-based films with antioxidant of bamboo leaves and ZnO nanoparticles for application in active food packaging. International Journal of Biological Macromolecules, 189, 363-369. https://doi.org/10.1016/j.ijbiomac.2021.08.136
  • Liu, W., Wang, Y.-J., Sun, Z. (2003). Effects of polyethylene-grafted maleic anhydride (PE-g-MA) on thermal properties, morphology, and tensile properties of low-density polyethylene (LDPE) and corn starch blends. Journal of Applied Polymer Science, 88(13), 2904-2911. https://doi.org/10.1002/app.11965
  • Lu, J., Qiu, Y., Muhmood, A., Zhang, L., Wang, P., Ren, L. (2023). Appraising co-composting efficiency of biodegradable plastic bags and food wastes: Assessment microplastics morphology, greenhouse gas emissions, and changes in microbial community. Science of The Total Environment, 875, 162356. https://doi.org/10.1016/j.scitotenv.2023.162356
  • Lupașcu, R.E., Ghica, M.V., Dinu-Pîrvu, C.-E., Popa, L., Velescu, B. Ștefan, Arsene, A. L. (2022). An Overview Regarding Microbial Aspects of Production and Applications of Bacterial Cellulose. Materials, 15(2), 676. https://doi.org/10.3390/ma15020676
  • Maitlo, G., Ali, I., Maitlo, H.A., Ali, S., Unar, I.N., Ahmad, M.B., … Afridi, M.N. (2022). Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment. Sustainability, 14(18), 11637. https://doi.org/10.3390/su141811637
  • Maluin, F.N., Hussein, M.Z. (2020). Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules, 25(7), 1611. https://doi.org/10.3390/molecules25071611
  • Manikandan, N.A., Pakshirajan, K., Pugazhenthi, G. (2020). Preparation and characterization of environmentally safe and highly biodegradable microbial polyhydroxybutyrate (PHB) based graphene nanocomposites for potential food packaging applications. International Journal of Biological Macromolecules, 154, 866-877. https://doi.org/10.1016/j.ijbiomac.2020.03.084
  • Marasco, I., Niro, G., de Marzo, G., Rizzi, F., D’Orazio, A., Grande, M., De Vittorio, M. (2023). Design and Fabrication of a Plastic-Free Antenna on a Sustainable Chitosan Substrate. IEEE Electron Device Letters, 44(2), 341-344. https://doi.org/10.1109/LED.2022.3232986
  • Martinez Villadiego, K., Arias Tapia, M.J., Useche, J., Escobar Macías, D. (2022). Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. Journal of Polymers and the Environment, 30(1), 75-91. https://doi.org/10.1007/s10924-021-02207-1
  • Mittal, M., Ahuja, S., Yadav, A., Aggarwal, N.K. (2023). Development of poly(hydroxybutyrate) film incorporated with nano silica and clove essential oil intended for active packaging of brown bread. International Journal of Biological Macromolecules, 233, 123512. https://doi.org/10.1016/j.ijbiomac.2023.123512
  • Morão, A., de Bie, F. (2019). Life Cycle Impact Assessment of Polylactic Acid (PLA) Produced from Sugarcane in Thailand. Journal of Polymers and the Environment, 27(11), 2523-2539. https://doi.org/10.1007/s10924-019-01525-9
  • Mort, R., Peters, E., Curtzwiler, G., Jiang, S., Vorst, K. (2022). Biofillers Improved Compression Modulus of Extruded PLA Foams. Sustainability, 14(9), 5521. https://doi.org/10.3390/su14095521
  • Murariu, M., Paint, Y., Murariu, O., Laoutid, F., Dubois, P. (2022). Tailoring and Long-Term Preservation of the Properties of PLA Composites with "Green" Plasticizers. Polymers, 14(22), 4836. https://doi.org/10.3390/polym14224836
  • Najafidoust, A., Allahyari, S., Rahemi, N., Tasbihi, M. (2020). Uniform coating of TiO2 nanoparticles using biotemplates for photocatalytic wastewater treatment. Ceramics International, 46(4), 4707–4719. https://doi.org/10.1016/j.ceramint.2019.10.202
  • Nakaji, Y., Tamura, M., Miyaoka, S., Kumagai, S., Tanji, M., Nakagawa, Y., … Tomishige, K. (2021). Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes. Applied Catalysis B: Environmental, 285, 119805. https://doi.org/10.1016/j.apcatb.2020.119805
  • Nguyen, H.T., Sionkowska, A., Lewandowska, K., Brudzyńska, P., Szulc, M., Saha, N., … Saha, P. (2022). Chitosan Modified by Kombucha-Derived Bacterial Cellulose: Rheological Behavior and Properties of Convened Biopolymer Films. Polymers, 14(21), 4572. https://doi.org/10.3390/polym14214572
  • Noivoil, N., Yoksan, R. (2021). Compatibility improvement of poly(lactic acid)/thermoplastic starch blown films using acetylated starch. Journal of Applied Polymer Science, 138(2), 49675. https://doi.org/10.1002/app.49675
  • Otey, F.H. (1976). Current and Potential Uses of Starch Products in Plastics. Polymer-Plastics Technology and Engineering, 7(2), 221-234. https://doi.org/10.1080/03602557608063115
  • Ou, Z., Zhou, Q., Rao, X., Yang, H., Huo, C., Du, X. (2021). Cellulose Isolated From Waste Rubber Wood and Its Application in PLA Based Composite Films. Frontiers in Bioengineering and Biotechnology, 9. Retrieved from https://www.frontiersin.org/articles/10.3389/fbioe.2021.666399
  • Oyom, W., Zhang, Z., Bi, Y., Tahergorabi, R. (2022). Application of starch-based coatings incorporated with antimicrobial agents for preservation of fruits and vegetables: A review. Progress in Organic Coatings, 166, 106800. https://doi.org/10.1016/j.porgcoat.2022.106800
  • Pal, K., Bharti, D., Sarkar, P., Anis, A., Kim, D., Chałas, R., … Jarzębski, M. (2021). Selected Applications of Chitosan Composites. International Journal of Molecular Sciences, 22(20), 10968. https://doi.org/10.3390/ijms222010968
  • Pan, Z., Sheng, J., Qiu, C., Wei, H., Yang, Q., Pan, J., Li, J. (2022). A Magic Filter Filled with Waste Plastic Shavings, Loofah, and Iron Shavings for Wastewater Treatment. Polymers, 14(7), 1410. https://doi.org/10.3390/polym14071410
  • Papari, S., Bamdad, H., Berruti, F. (2021). Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Materials, 14(10), 2586. https://doi.org/10.3390/ma14102586
  • Park, S., Oh, Y., Yun, J., Yoo, E., Jung, D., Oh, K.K., Lee, S. H. (2020). Cellulose/biopolymer/Fe3O4 hydrogel mi-crobeads for dye and protein adsorption. Cellulose, 27(5), 2757-2773. https://doi.org/10.1007/s10570-020-02974-5
  • Pazhamannil, R.V., V.N., J.N., P., G., Edacherian, A. (2022). Property enhancement approaches of fused filament fabrication technology: A review. Polymer Engineering & Science, 62(5), 1356–1376. https://doi.org/10.1002/pen.25948
  • Perez-Nakai, A., Lerma-Canto, A., Dominguez-Candela, I., Ferri, J. M., Fombuena, V. (2023). Novel Epoxidized Brazil Nut Oil as a Promising Plasticizing Agent for PLA. Polymers, 15(9), 1997. https://doi.org/10.3390/polym15091997
  • Popa, M.S., Frone, A.N., Panaitescu, D.M. (2022). Polyhydroxybutyrate blends: A solution for biodegradable packaging? International Journal of Biological Macromolecules, 207, 263-277. https://doi.org/10.1016/j.ijbiomac.2022.02.185
  • Prata, J.C., Silva, A.L. P., Duarte, A.C., Rocha-Santos, T. (2021). The road to sustainable use and waste management of plastics in Portugal. Frontiers of Environmental Science & Engineering, 16(1), 5. https://doi.org/10.1007/s11783-021-1439-x
  • Rajeshkumar, G., Arvindh Seshadri, S., Devnani, G.L., Sanjay, M.R., Siengchin, S., Prakash Maran, J., … Ronaldo Anuf, A. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, 310, 127483. https://doi.org/10.1016/j.jclepro.2021.127483
  • Rana, A.K., Thakur, M.K., Saini, A.K., Mokhta, S.K., Moradi, O., Rydzkowski, T., … Thakur, V. K. (2022). Recent developments in microbial degradation of polypropylene: Integrated approaches towards a sustainable environment. Science of The Total Environment, 826, 154056. https://doi.org/10.1016/j.scitotenv.2022.154056
  • Rangira, I., Gu, B.-J., Ek, P., Ganjyal, G.M. (2020). Pea starch exhibits good expansion characteristics under relatively lower temperatures during extrusion cooking. Journal of Food Science, 85(10), 3333–3344. https://doi.org/10.1111/1750-3841.15450
  • Ray, S., Prajapati, V., Patel, K., Trivedi, U. (2016). Optimization and characterization of PHA from isolate Pannonibacter phragmitetus ERC8 using glycerol waste. International Journal of Biological Macromolecules, 86, 741-749. https://doi.org/10.1016/j.ijbiomac.2016.02.002
  • Rezvani Ghomi, E., Khosravi, F., Saedi Ardahaei, A., Dai, Y., Neisiany, R. E., Foroughi, F., … Ramakrishna, S. (2021). The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers, 13(11), 1854. https://doi.org/10.3390/polym13111854
  • Rhu, D.H., Lee, W.H., Kim, J.Y., Choi, E. (2003). Polyhydroxyalkanoate (PHA) production from waste. Water Science and Technology, 48(8), 221-228. https://doi.org/10.2166/wst.2003.0472
  • Richter, J.K., Pietrysiak, E., Ek, P., Dey, D., Gu, B.-J., Ikuse, M., … Ganjyal, G.M. (2022). Extrusion characteristics of ten novel quinoa breeding lines. Journal of Food Science, 87(12), 5349-5362. https://doi.org/10.1111/1750-3841.16360
  • Rizal, S., Lai, T.K., Muksin, U., Olaiya, N.G., Abdullah, C.K., Ikramullah, … Abdul Khalil, H.P.S. (2020). Properties of Macroalgae Biopolymer Films Reinforcement with Polysaccharide Microfibre. Polymers, 12(11), 2554. https://doi.org/10.3390/polym12112554
  • Rodriguez Llanos, J.H., Tadini, C.C., Gastaldi, E. (2021). New strategies to fabricate starch/chitosan-based composites by extrusion. Journal of Food Engineering, 290, 110224. https://doi.org/10.1016/j.jfoodeng.2020.110224
  • Salmas, C.E., Giannakas, A.E., Baikousi, M., Leontiou, A., Siasou, Z., Karakassides, M.A. (2021a). Development of Poly(L-Lactic Acid)/Chitosan/Basil Oil Active Packaging Films via a Melt-Extrusion Process Using Novel Chitosan/Basil Oil Blends. Processes, 9(1), 88. https://doi.org/10.3390/pr9010088
  • Salmas, C.E., Giannakas, A.E., Baikousi, M., Leontiou, A., Siasou, Z., Karakassides, M.A. (2021b). Development of Poly(L-Lactic Acid)/Chitosan/Basil Oil Active Packaging Films via a Melt-Extrusion Process Using Novel Chitosan/Basil Oil Blends. Processes, 9(1), 88. https://doi.org/10.3390/pr9010088
  • Samadam, A., Vallepalli, R., Neeraj Kumar, K., Sreekanth, M., Raman Goud, R. (2022). Mechanical properties evaluation and behaviour of cellulose-HDPE composite. Materials Today: Proceedings, 62, 3405-3410. https://doi.org/10.1016/j.matpr.2022.04.271
  • Samadhiya, K., Sangtani, R., Nogueira, R., Bala, K. (2022). Insightful Advancement and Opportunities for Microbial Bioplastic Production. Frontiers in Microbiology, 12. Retrieved from https://www.frontiersin.org/articles/10.3389/fmicb.2021.674864
  • Samaniego, A.J., Espiritu, R. (2022). Prospects on utilization of biopolymer materials for ion exchange membranes in fuel cells. Green Chemistry Letters and Reviews, 15(1), 253-275. https://doi.org/10.1080/17518253.2022.2040599
  • Scalera, F., Monteduro, A.G., Maruccio, G., Blasi, L., Gervaso, F., Mazzotta, E., … Piccirillo, C. (2021). Sustainable chitosan-based electrical responsive scaffolds for tissue engineering applications. Sustainable Materials and Technologies, 28, e00260. https://doi.org/10.1016/j.susmat.2021.e00260
  • Shang, H., Xu, K., Li, X., Lu, S., Ke, L., Yang, H.-R., … Shen, B. (2022). UV-protective and high-transparency poly(lactic acid) biocomposites for ecofriendly packaging of perishable fruits. International Journal of Biological Macromolecules, 222, 927-937. https://doi.org/10.1016/j.ijbiomac.2022.09.219
  • Siracusa, V., Blanco, I. (2020). Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers, 12(8), 1641. https://doi.org/10.3390/polym12081641
  • Spiridon, I., Anghel, N.C., Darie-Nita, R.N., Iwańczuk, A., Ursu, R.G., Spiridon, I.A. (2020). New composites based on starch/Ecoflex®/biomass wastes: Mechanical, thermal, morphological and antimicrobial properties. International Journal of Biological Macromolecules, 156, 1435-1444. https://doi.org/10.1016/j.ijbiomac.2019.11.185
  • Swetha, T.A., Bora, A., Mohanrasu, K., Balaji, P., Raja, R., Ponnuchamy, K., … Arun, A. (2023). A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging. International Journal of Biological Macromolecules, 234, 123715. https://doi.org/10.1016/j.ijbiomac.2023.123715
  • Tábi, T., Ageyeva, T., Kovács, J.G. (2022). The influence of nucleating agents, plasticizers, and molding conditions on the properties of injection molded PLA products. Materials Today Communications, 32, 103936. https://doi.org/10.1016/j.mtcomm.2022.103936
  • Wang, Y., Zhong, Y., Shi, Q., Guo, S. (2021). Study of the Preparation and Properties of TPS/PBSA/PLA Biodegradable Composites. Journal of Composites Science, 5(2), 48. https://doi.org/10.3390/jcs5020048
  • Wang, Y.-J., Liu, W., Sun, Z. (2004). Effects of glycerol and PE-g-MA on morphology, thermal and tensile properties of LDPE and rice starch blends. Journal of Applied Polymer Science, 92(1), 344-350. https://doi.org/10.1002/app.20015
  • Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypiński, M., Klepka, T., Thakur, V.K. (2018). Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 23(4), 383–395. https://doi.org/10.1080/1023666X.2018.1455382
  • Wu, J., Hu, T., Wang, H., Zong, M., Wu, H., Wen, P. (2022). Electrospinning of PLA Nanofibers: Recent Advances and Its Potential Application for Food Packaging. Journal of Agricultural and Food Chemistry, 70(27), 8207-8221. https://doi.org/10.1021/acs.jafc.2c02611
  • Xue, C., Wilson, L.D. (2021). An Overview of the Design of Chitosan-Based Fiber Composite Materials. Journal of Composites Science, 5(6), 160. https://doi.org/10.3390/jcs5060160
  • Yahya, E.B., Jummaat, F., Amirul, A.A., Adnan, A.S., Olaiya, N.G., Abdullah, C.K., … Khalil, H.P.S.A. (2020). A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery. Antibiotics, 9(10), 648. https://doi.org/10.3390/antibiotics9100648
  • Yang, S., Ma, H., Chen, Y., Sun, M., Liu, H., Zhou, X. (2023). Optimization of processing parameters in poly(lactic acid)-reinforced acetylated starch composite films by response surface methodology. Iranian Polymer Journal, 32(3), 251-261. https://doi.org/10.1007/s13726-022-01113-0
  • Yu, T.-Y., Tseng, Y.-K., Lin, T.-H., Wang, T.-C., Tseng, Y.-H., Chang, Y.-H., … Su, W.-F. (2022). Effect of cellulose compositions and fabrication methods on mechanical properties of polyurethane-cellulose composites. Carbohydrate Polymers, 291, 119549. https://doi.org/10.1016/j.carbpol.2022.119549
  • Zhang, Y., Xu, X. (2022). Predicting mechanical performance of starch-based foam materials. Journal of Cellular Plastics, 58(3), 505-514. https://doi.org/10.1177/0021955X211062638
  • Zhao, X., Liu, J., Li, J., Liang, X., Zhou, W., Peng, S. (2022). Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials. International Journal of Biological Macromolecules, 218, 115-134. https://doi.org/10.1016/j.ijbiomac.2022.07.091
  • Zhou, C., Wu, M., Sun, D., Wei, W., Yu, H., Zhang, T. (2022). Twin-Screw Extrusion of Oat: Evolutions of Rheological Behavior, Thermal Properties and Structures of Extruded Oat in Different Extrusion Zones. Foods, 11(15), 2206. https://doi.org/10.3390/foods11152206
  • Zhou, L., Ke, K., Yang, M.-B., Yang, W. (2021). Recent progress on chemical modification of cellulose for high mechanical-performance Poly(lactic acid)/Cellulose composite: A review. Composites Communications, 23, 100548. https://doi.org/10.1016/j.coco.2020.100548
  • Zubair, M., Ferrari, R., Alagha, O., Mu’azu, N. D., Blaisi, N. I., Ateeq, I. S., Manzar, M. S. (2020). Microwave Foaming of Materials: An Emerging Field. Polymers, 12(11), 2477. https://doi.org/10.3390/polym12112477
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-351a179b-bf29-4ede-a5ba-ee6a79e1738e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.