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Robustness of Multimodal Transportation Networks

Model oceny odporności multimodalnych sieci transportowych*
This paper describes a declarative approach to modeling a multimodal transportation network (MTN) composed of multiple 
connecting transport modes, such as bus, tram, light rail, subway and commuter rail, where within each mode, service is pro-
vided on separate lines or routes. The considered model of a network of multimodal transportation processes (MTPN) provides 
a framework to address the needs for transportation networks robustness while taking into account their capacity and demand 
requirements. Therefore the work focuses on evaluation of the network robustness allowing distinguished multimodal processes to 
continue in order to accomplish trips following an assumed set of multimodal chains connecting transport modes between origins 
and destinations. Consequently, a solution to the problem of prototyping robust transits on a given multimodal network is imple-
mented and tested. The conditions that guarantee the network robustness, taking into account disruptions of supply and demand as 
well as operational control, are provided. The aim of investigations is to provide a tool for evaluating the robustness of a network 
of multimodal transportation processes as well as different travel modes through a transportation network.

Keywords: multimodal networks, transportation systems, cyclic scheduling, robustness, multimodal processes, 
state space, cyclic steady state.

Dynamiczny rozwój infrastruktury komunikacji miejskiej obejmującej linie autobusowe, trolejbusowe, tramwajowe, linie metra, 
kolei podmiejskiej, itp. składające się na tzw. Multimodalne Sieci Transportowe (MST) rodzi wiele nowych problemów. Wśród 
ważniejszych z nich warto wymienić problemy planowania obsługi ruchu pasażerskiego w sytuacjach związanych z awariami 
elementów infrastruktury, wypadkami losowymi czy też z obsługą imprez masowych. Wiadomo, że istnienie rozwiązań dopusz-
czalnych gwarantujących zakładaną przepustowość infrastruktury warunkuje tzw. odporność MST na ww. zakłócenia. W tym 
kontekście, niniejsza praca przedstawia pewien deterministyczny model multimodalnej sieci transportowej złożonej z połączonych 
stacjami przesiadkowymi, linii komunikacji miejskiej. Składające się na sieć, pracujące w zamkniętych cyklach, linie komunikacji 
miejskiej pozwalają obsłuchiwać ruch pasażerski na wybranych kierunkach np. północ-południe. Obsługiwane strumienie pasa-
żerów modelowane są jako tzw. multimodalne procesy transportowe. Wprowadzone miary odporności MST, umożliwiające ocenę 
rozważanych wariantów infrastruktury, pozwalają na wyznaczenie warunków spełnienie, których gwarantuje dopuszczalną jakość 
obsługi ruchu pasażerskiego. Umożliwiają, zatem zarówno planowanie obsługi pasażerów na wybranych trasach, jak i kształto-
wanie struktury rozbudowywanej i/lub modernizowanej sieci komunikacji miejskiej.

Słowa kluczowe: sieci multimodalne, systemy transportowe, harmonogramowanie cykliczne, odporność na 
zakłócenia, procesy multimodalne, przestrzeń stanów, cykliczne przebiegi ustalone.

1. Introduction

Multimodal route planning that aims to find an optimal route 
between the source and the target of a trip while utilizing several 
transportation modes including different passenger/cargo transporta-
tion systems, e.g. ship, airline, AGV systems, train and subway net-
works, are of significant and fast growing importance [9, 11, 14, 16, 
20]. Multimodal transportation process (MTP), i.e. a set of transport 
modes which provide connection from the origin to the destination, 
executed in a multimodal transportation network (MTN) can be seen 
as passengers and/or goods flow transferred between different modes 
to reach their destination [5]. 

MTPs planning problems, i.e. taking into account MTPs routing 
and scheduling can be found in different application domains (such 
as manufacturing, intercity fright transportation supply chains, multi-
modal passenger transport network combining several unimodal net-
works as well as data and supply media flows, e.g., cloud computing, 
oil pipeline and overhead power line networks) [1, 3, 5, 6, 8, 15, 16]. 
The problems concerning multimodal routing of freight flows and 
scheduling of multimodal transportation processes (MTPN) schedul-
ing, are NP-hard [7, 12]. 

The local transportation processes serviced by different transporta-
tion modes, while executed along unimodal networks (lines), are usual-
ly cyclic. Hence, MTPs supported by them also have the periodic char-
acter. That means that the periodicity of MTPN depends on periodicity 
of unimodal (local) processes executed in MTN. Of course, the MTPN 
throughput is maximized by the minimization of its cycle time. 

Apart from such typically used objectives as the maximization of 
a user’s (e.g. a passenger) benefits and/or the minimization of a pro-
vider’s (e.g. public transport service bureau) costs, the present paper 
discusses the importance of a network structure in assuring a robust 
network. In other words, a network structure design, that is efficient 
at handling traffic in normal conditions and provides spare capacity in 
exceptional situations, is of our main interest. 

Therefore, the considered problem can be seen as a problem of 
robust MTPN designing where the assumed demand objectives are 
satisfied. That is, assuming each line is serviced by a set of stream-like 
moving transportation means (vehicles) and operation times required 
for travelling between subsequent stations as well as semaphores 
ensuring vehicles mutual exclusion on shared stations are given, the 
main question concerns MTPN timetabling, for instance guaranteeing 
the shortest time of passengers’ itinerary following a given direction. 
MTN capacity determines a maximum traffic flow obtainable with 
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use of all available lines and roads. In turn, a network demand reflects 
its users’ perspective, i.e. MTPs encompassing traveling passengers 
itineraries and conditions, taking into account factors such as the 
quality of transport options available and their prices. Depending on 
different supply and demand as well as operation control disruptions 
the MTPN timetabling and, consequently, the time of the passengers 
trip, following different itineraries, may dramatically differ. In that 
context, special attention is devoted to disruptions causing MTPNs’ 
deadlock occurrence while threatening MTP by congestions arise. 

The declarative models employing the constraint programming 
techniques implemented in modern platforms such as OzMozart, 
ILOG, [2, 3, 4] seems to be well suited to cope with MTPs plan-
ning problems. Since a problem of robust MTPNs design remains 
still open, the sufficient conditions guaranteeing the assumed level of 
MTN’s robustness are of primary importance. Therefore, constraints 
stating the sought conditions can be formulated in terms of MTPN 
declarative model as well. 

To the best of our knowledge, there is no research paper on cyclic 
scheduling of MTPs subjected to assumed robustness of MTPN mod-
elled in terms of SCCPs. The existing approach to solving the SCCPs 
scheduling problem is based upon the simulation models, e.g. the Petri 
nets [17], the algebraic models [18] upon the (max,+) algebra or the 
artificial intelligent methods [10]. The SCCP driven models, assum-
ing a unique process execution along each cyclic route while allowing 
to take into account the stream-like flow of local cyclic processes, 
e.g. buses servicing a given city line, studied in [5], do not take into 
account the MTP robustness factor. Therefore, this work can be seen 
as a continuation of our former investigations conducted in [2, 3, 4, 5, 
19]. In that context, our paper provides contribution to a time and/or 
distance robust path-finding problem [13, 14] within the environment 
of multimodal transportation network as well as its possible imple-
mentation in the route advisory systems solving the Multi-Criteria, 
Multi-Modal Shortest Path Problem [9]. 

The rest of the paper is organized as follows. We start by intro-
ducing a concept of multimodal transportation network (MTN) and 
then provide its representation in terms of a system of concurrently 
flowing cyclic processes (SCCP) encompassing a network of mul-
timodal transportation processes (MTPN) while allowing for mul-
timodal transportation processes (MTPs) modeling. The MTPN ro-
bustness issues in different contexts of supply and demand as well as 
operation control disruptions (disruptions leading to the deadlocks) 
are discussed.

Next, we present the formulation of the problem of robust MTPN 
designing where network’s capacity and demand objectives are si-
multaneously taken into account. Afterwards, we discuss the implica-
tions of adopting different robustness measures and following from 
them network robustness conditions. Then, we discuss and compare 
the results obtained through the model for an arbitrarily chosen set 
of MTPs. In the final section, we briefly summarize our results and 
provide some concluding results. 

2. Multimodal Transportation Network

Multimodal Transportation Network (MTN) concerning the or-
ganization of city traffic and the network of public transportation can 
be modelled with focus on the network of city serviced lines and/or 
routes. Subway or tram lines as well as bus routes form cycles inter-
connected via common shared interchange stations or closely situ-
ated (short walk-distance) transportation mode specific stations. The 
means of transportation servicing a particular line mode can be seen 
in turn as transportation processes enabling passengers to move along 
their destination route. 

2.1.	 Structure of Multimodal Processes Network

The MTPN seen as a network of vehicles periodically circulating 
along cyclic routes (see Fig. 1a) can be modeled in terms of Systems 
of Concurrently flowing Cyclic Processes (SCCP) shown in Fig. 1b). 
Vehicles are used for the transport of passengers following two direc-
tions: north-south (blue line – mP1) and east-west (red line – mP2). 
These routes, setting the courses of multimodal processes, are com-
posed of fragments of the local mode transportation lines (trams and 
busses). In the considered case, there are six means of transportation: 
trams (P1, P3, P5) and busses (P2, P2′ , P4). 

The SCCP is assumed to include two types of processes:
local processes––  (representing modes of transport – P1, P2, P3, 
P4, P5), whose operations are cyclically repeated along the set 
routes (sequences of successively visiting stations). For the sys-
tem from Fig. 1b), the line linking stations R1, R2, R8, R9 provide 
two buses that can be modeled by two streams, P2 and P2′, re-
spectively. The routes of local processes are defined as follows: 
p1=(R7, R2, R3), p2=p2′=(R1, R2, R8, R9), p3= (R1, R5, R4), 
p4= (R3, R4, R6), p5= (R8, R10, R9).	 
The i-th operation (executed on resource Rk) of the local proc-
ess Pj (or its stream) is denoted by oi,j and ti,j denotes the time 
of its execution.
multimodal processes––  (mP1, mP2) representing streams of 
passengers. Operations of the multimodal processes are im-
plemented cyclically along routes being compositions of 
fragments of routes of local processes representing resources 
used for transporting materials along a given route. For the 
system from Fig. 1b), the routes of multimodal processes 
(i.e. itineraries of passenger streams) are defined as follows: 

mP1 = ((R10, R9),(R9, R1, R2),(R2, R3),(R3, R4, R6)), mP2 = ((R7, R2, 
R3),(R3, R4,),(R4, R1, R5)).

Similarly as before the i-th operation of the multimodal process, mPj 
is denoted by moi,j and mti,j denotes the time of its execution.

Process operation are implemented on two kinds of resources: lo-
cal resources (each of them is used by only one process of a given 
kind – R5, R6, R7, R10) and shared resources (each of them is used by 
more than one process of a given kind: R1−R4, R8, R9). 

The local processes use resources that are shared in the mutual ex-
clusion mode, i.e. in a given moment only one local process operation 
of a given kind can be implemented on a resource (in other words one 
station can be occupied by only one transportation mode).

The access to shared resources of local processes, is given in the 
sequence determined by the dispatching rules Θ. It is assumed that 
Θ = {σ1,…,σk,…,σlk }, where σk – is the sequence whose elements de-
termine the order in which the processes (or their streams) are provid-
ed with access to the resource Rk. In case of the system from Fig. 1b), 
the access to shared resources is determined by the following rules:

σ1 = (P2, P3, P2′), σ2 = (P1 ,P2 ,P2′), σ3 = (P1 ,P4), σ4 = (P3, P4), σ8 = (P5, P2, P2′),
	 σ9 = (P5, P2, P2′).

The subsequent operation starts right after the current operation is 
completed, providing that the resource indispensible to its implemen-
tation is available. While waiting for the busy resource, the process 
does not release the resource which was assigned for implementing 
the previous operation [4]. Moreover, an assumption is made that 
processes are of non-expropriation nature, and the times and sequence 
of operations performed by the processes do not depend on external 
interferences.

The parameters described above constitute the structure of SCCP 
that determines its behavior. Formally, the structure of SCCP is de-
fined as the following tuple [4]:
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	 SC=((R,SL),SM) ,	 (1)

where:	 R= {Rk | k=1,...,lk} – set of resources, 
SL=(P,U,O,T,Θ) – structure of local processes, where:
P={Pi | i=1…ln } – set of local processes (streams), Pi – i-th process, 
U={ pi = (pi,1,… ,pi,j,… ,pi,lr(i) ) | i=1…ln} – set of routes of local proc-

esses, pi – i-th route, p(i,j) ∈ R – resource required for imple-
menting j-th operation of the process Pi, 

O={Oi = (oi,1,..,oi,j,...,oi,lr(i) ) | i=1…ln} – set of sequences of opera-
tions, oi,j – j-th operation of the process Pi,

T={Ti= (ti,1,… ,ti,j,… ,ti,lr(i) ) )| i=1…ln} – set of sequences of opera-
tion performance times , ti,j – time of performing an opera-
tion oi j

h
, , 

Θ={σk=(sk,1,...,sk,d,...,sk,lh) | k=1…lk} – set of dispatching rules, σk – 
dispatching rule for the resource Rk, sk,d – local process, lh– 
length of the rule σk,

SM = (mP,mU,mO,mT) – structure of multimodal processes, where:
	 mP={mPi | i=1…lw} – set of multimodal processes mPi, lw- 

number of the processes 

	 mU={mpi = (mpi,1,…,mpi,j,…,mpi,lm(i) | i=1…lw} – set of routes 
of multimodal processes, mpi – i-th route, 

	 mO={ mOi
h = (moi,1,...,moi,j,...,moi,lm(i) | i=1…lw} – set of se-

quences of operations, moi,j – j-th operation of the process 
mPi,

	 mT={mTi = (mti,1,… ,mti,j,… ,mti,lm(i) | i=1…lw} – set of sequenc-
es of operation times, mti,j – time of operation performance 
moi,j.

2.2.	 Behavior of Multimodal Processes Network

In the systems of concurrent cyclic processes, the behavior is usually 
presented [2, 3, 4], as schedules determining the moments of initiat-
ing all the operations implemented within them. Fig. 2b) provides an 
example of such a schedule that determines the way of implementing 
the processes of SC structure from Fig. 2a).
The presented schedule is an example of the cyclic behavior, i.e. the 
successive states of the processes are reachable within the constant 
period (the operations of local and multimodal processes are repeated 
within the period α=7 time units [t.u.]).

Fig. 1. An example of MTPN a) and corresponding SCCP model b)

Fig. 2. Example of SCCP structure a) and the corresponding cyclic schedule b)
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In this approach, each behavior can be represented by a sequence 
of successive states (subsequent allocations of processes, as well suc-
cessively changing, according to the rules Θ of access rights). In case 
of the schedule from Fig. 2b), it is a sequence of 7 states S0, S1, …, S6. 
Formally, the SCCP state is defined as follows [4]:

	 Sr=(Slr, mSr ), 	 (2)

where Slr means the rth state of local processes: 
	 Slr = (Ar,Zr,Qr),
	 Ar = (a1

r,a2
r,…,ak

r,…,alk
r) – allocation of local processes in the 

r-th state, ak
r ∈ P ∪ {∆}; ak

r=Pi – allocation meaning that the 
resource Rk occupied by the process Pi, and ak

r=∆ – means 
that the resource Rk is unoccupied.

	 Zr = (z1
r,z2

r,…,zk
r,…,zm

r) – sequence of semaphores of the r-th 
state, zk

r ∈ P  – semaphore determining the process (an 
element of rule σk), which has an access to the resource Rk 
next in the sequence, i.e. zk

r=Pi means that process Pi is the 
next to access the resource Rk.

	 Qr = (q1
r,q2

r,…,qk
r,…,qm

r) – sequence of semaphore indexes of 
the r-th state, qk

r – index determining the position of the 
semaphore value zk

r in the dispatching rule σk, qk
r ∈ ℕ. For 

example, if a semaphore z2
r indicates the process P1: z2

r=P1 
which is the second element of the dispatching rule σ2, then 
q2

r = 2. 
mSr – means the r-th state of multimodal processes:

	 mS mA mA mAr r
i
r

l
r= … …( )1 , , , , ,

	 mA ma ma ma mai
r

i
r

i
r

i k
r

i m
r= … …( ), , , ,, , , , ,1 2  – sequence of 

allocations of a multimodal process mPi in the r-th state, 
ma mPi k

r
i, ,∈{ }∆ , mai,k

r = mPi – allocation means that the 
resource Rk is occupied by the process mPi, and mak

r =∆ – 
means that the resource Rk is unoccupied.

Behaviors of the system characterized by various sequences of 
subsequently reachable states Sr (2) can be illustrated in a graphical 
form as the state space 𝒫. Fig. 3a) shows an example illustrating this 
possibility for the system from Fig. 2a). If we take the graph-theoreti-
cal interpretation of the space 𝒫, the diagraph corresponding to it is 
represented by the pair 𝒫=(  ,  ), where   means a set of admissible 

SCCP states [4], ⊆  ×   means a set of arcs representing transi-
tions between SCCP states (transitions take place according to the 
function Sf=δ(Se ) described in [4]. 

Cyclic behaviors of SCCP are connected with the presence of cy-
cles (e.g. cycle in digraph G1) in the space 𝒫. A sequence of states 
being part of a cycle is called as a cyclic steady state.

Formally, the cyclic steady state is the sequence 
D S S S SC

d d d di i ld= … …( )+1 1, , , , ,  of various admissible states 

S Sd di i, + ∈1  , in which each pair of states satisfies the expression  

S Sd di i+ = ( )1 δ , i=1…(ld−1) and S Sd lp dld1 = ( )δ .

The states of space 𝒫 leading to the shared cyclic steady state DC 
constitute a coherent digraph called Whirlpool W(DC) (Fig. 3b).

	 W D G D G DC C T
D DT DT C

( ) = ( )∪ ( )














∀ ∈ ( )




.
	 (3)

where:	 G(DC ) – digraph consisting of cyclic steady state DC,
G(DT ) – digraph consisting of sequence of states DT leading to the 

cyclic steady state DC, DT ∈ DT(DC ), where: DT(DC) – set 
of all sequences of states leading to DC,

G1  ∪  G2 – sum of digraphs G1=(V1,V1) and G2=(V2,E2): 	
G G V V E E1 2 1 2 1 2∪ ∪ ∪= ( , ) ,	  

G G G G for G G G GiG G a ai∈
⋅ = ∪ ∪ ∪ ={ }* , , , ,*


 





1 2 1 2   

An example of a whirlpool is presented in Fig. 3b). It shows clear-
ly that the initiation of process implementation of any state belonging 
to this whirlpool consequently results in cyclic state DC.

It must be emphasized that not all digraphs of the state space 𝒫 
result in a cyclic steady states DC. Some states lead to deadlock states 
S* (marked with the symbol ⊗), which means system interruption 
caused by a closed-loop resource request occurrence.

An example of a deadlock caused by a closed-loop resource re-
quest is illustrated in Fig. 3a). In the state S*, the process P2 waits 
for releasing the resource R3 by the process P1, the process P1

 waits 
for releasing the resource R5 by the process P3 and the process P3 
waits for the access to resource R1. The access to resource R5 is pos-
sible only for the process P2; yet, it cannot reach the resource as it is 

Fig. 3. The states space 𝒫 determined by structure from Fig 2a), and the basic components of 𝒫 b) 

.
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blocked by P1. In practice, we face such situations when buses (trams) 
queue up in the order of service different that that required in a given 
station. In the considered case, bus P2 is the last in the queue though 
it is the first to be served. As a result, such deadlocks stop the work 
of the system. 

States causing deadlocks constitute the other type of behavior di-
graphs: Tree (Fig. 3b): 

	 Tr G DS T
D DT ST

*

*
( ) = ( )















∀ ∈ ( )



.
,	 (4)

where:	 G(DT ) – a digraph consisting of sequence of states DT 
leading to the deadlock state S*, DT ∈ DT(S*); DT(S*) – a set 
of all sequences of states leading to the deadlock state S*. 

Whirlpools and trees are the two basic components of the state 
space 𝒫. Whirlpools make it possible to estimate the presence of cy-
clic steady states (determining the collision-free and deadlock-free 
transport of passengers in MTN). Trees enable determining dangerous 
states that lead to deadlocks (e.g. traffic congestions).

2.3.	 Disruptions in Supply and Demand

Determining the state spaces is the subjects of numerous investi-
gations [2, 3, 4]. One of the properties of the considered SCCPs is the 
fact that once obtained behavior (cyclic steady state DC that guaran-
tees meeting the requirements of a user, deadlock S*) does not change 

Fig. 4. Example of structural disruption in system from Fig. 1, stream failure P′2 a) , connection failure R8 – R9 b)

Fig. 5. The change of the state space generated by Fig. 4 while cussed by structural disruptions 
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until the work conditions of the system are changed (e.g. change in the 
parameters of structure SC). An alteration in conditions of this kind 
may be caused by a number of external disruptions. Among disrup-
tions in supply and demand, two types of disruptions can be distin-
guished:

	structural disruption: disruptions related to changes in the struc-––
ture SC including, among others, addition or removal of a proc-
ess (e.g. a new bus) – see Fig. 4a), changes in process routes 
caused by failures of transport lines (the railway/street tracks) 
– see Fig. 4b), resources failure (the tram/bus stations), etc.
behavioral malfunction: disruptions related to changes in the ––
way processes are implemented (disruptions of the system 
state Sr) including:
delays in the course of operation implementation (changes in •	
duration of operation ti,j). SCCPs systems subjected to this 

kind of disruptions have the ability to return to cyclic steady 
states unaided [5], 
disruption in operation control resulting in changes in the cur-•	
rent access rights to the shared resources (changes in values of 
semaphores Zrand indexes Qr related to them). Such disrup-
tions include failures of traffic lights, railway signal, etc.

Examples of structural damages are presented in Fig. 4. We are 
considering a situation when the removal of stream P2′ (line P2′ bus 
broke down) – see Fig. 4a), and next there was a failure in the connec-
tion between resources R8 and R9 – see Fig. 4b). Consequently, the 
route of the local process P2 was changed into p2=(R1,R2,R8,R10,R9); 
in practice it means that bus P2, changed its itinerary. When such a 
series of disturbances occurs the question arises whether it is pos-
sible to maintain the cyclic behavior of the system.

Figure 5 shows state spaces 𝒫0, 𝒫1, 𝒫2 generated by the structures 
of SCCP affected by subsequent failures. In case of the first failure, 

Fig. 6.	 Schedules illustrating changes of SCCP behavior caused by structural disruptions: leading to the cyclic steady state – disruption from Fig 4a) a), leading 
to the cyclic steady state – disruption from Fig 4b) b), leading to the deadlock c)   
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changing the state space from 𝒫0 to 𝒫1results in the transition of the 
system from the state S0 to St1, which leads to cyclic steady state DC,1. 
Generally, disruptions of this kind (removing processes) lead back to 
the cyclic steady state; these disruptions were subjected to investiga-
tions described in [5].

In case of the next disruption (removal of the connection R8 – R9), 
the behavior of the system is not that obvious. Figure 5 presents two 
possible scenarios for the further behavior of the system, depending 
on the state in which the disruption occurred. The occurrence of a 
disruption is equivalent to changing the state space to 𝒫2, where the 
state S'4 passes to the state Sr1, and the state S'2 passes to the state Sd1 
(as a result of changing the itinerary of the process P2, some values of 
semaphores and indexes change – they are marked with a frame  ).

It is clear that the occurrence of a disruption in the state S'4 re-
sults in disturbances in the behavior of the system manifested by the 
states (i.e. Sr1, Sr2) leading to a new cyclic steady state DC,2. On the 
other hand, the disruption in the state S'2 (see Fig. 6c) results in states 
leading to the deadlock S*. Schedules illustrating the described-above 
transitions are presented in Fig. 6.

As the described example shows, the occurrence of the structural 
disruption in SCCP causes a change of states and, consequently, the 
current state of the system. Further behavior of the system depends on 
the fact whether the newly obtained state is a part of a whirlpool (lead-
ing to a cycle, as Sr1) or a tree (leading to a deadlock, as Sd1). 

2.4.	 Disruptions in Operation Control

A change in the structure SC caused by the occurence of structural 
disruption leads to the change in the state space (e.g. a change from 
𝒫0 to 𝒫1 and 𝒫1 to 𝒫2). However, such situations do not happen in 
case of behavioral malfunction, and especially in case of disruptions 
in operation control. Disruptions of this kind do not lead to the physi-
cal damage of the structure (connection failure, removal of a process, 
etc.) and, consequently, they do not cause changes in the space state. 
It means that the change of the current state space, resulting from a 
disruption, occurs in the same space.

An example illustrating a situation of this kind is shown in Fig. 7. 
The considered disruption is of the operation control type. Its idea is 
to change the current access rights to resources (by changing sema-
phores Z1 and corresponding indexes Q1). For example, the disruption 
in the state S1 consists of changing the access rights to the resource R3 
(from 𝒫1 to 𝒫2) and R5 (from 𝒫1 to 𝒫3). The change of this kind re-

sults in a transition of the system into the state St1 which, subsequently 
(through the states St1 and S6) can return to the cyclic steady state DC,1. 
In practice, such a disruption may mean a signaling system failure in 
the stations R3 and R5, which results in the change of servicing order 
of trams and buses in these stations. Another example, this time lead-
ing to deadlock (see Fig. 7), is the disruption in the state S3.

Similarly as in case of structural damages, the system’s ability to 
return to cyclic steady state after the disruption of operation control 
depends on the system’s ability to pass to the state included in the 
whirlpool. 

3. Problem formulation

The existence of states leading to cyclic steady state, among states 
resulting from a disruption, proves the system’s ability to self-organ-
ize. The system’s robustness results from this ability. It is assumed 
that the robustness is expressed as:

	 Rob dist
NC dist
NT dist

( ) = ( )
( )

	 (5) 

where:
Rob(dist) – robustness of SCCP to disruption dist; Rob(dist) ∈[0,1]; 

Rob(dist) = 0 – means the lack of robustness, i.e. 
disruption dist will always lead to a deadlock,	  
Rob(dist) = 1 – means full robustness to disruption dist, 
regardless of the disruption state, the system always returns 
to the cyclic steady state,

𝒫dist		 – state space imposed by disruption dist,
NC(dist)	– number of states leading to cyclic steady states contained 

in 𝒫dist, 
NT(dist) – number of states contained in 𝒫dist, NT(dist)=|  dist |.

According to (5), in all the cases discussed so far, the system’s 
robustness to disruption dist should be regarded as the ratio of the 
number of whirlpool’s states to states of the space 𝒫dist. The value, 
obtained in this way, determines the natural robustness (denoted as 
Rob0 (dist) determined by the structure of the system SC (1). 

Owing to the fact that in many cases occurring in practice [2, 3, 
4] the state space 𝒫dist includes mainly digraphs of the tree type, the 
value Rob0 (dist) does not exceed 0.5. That means, that over 50% 
of possible disruptions lead to stoppage of the system (deadlocks). 

Fig. 7.	 The state space 𝒫0 generated by the system from Fig. 2 due to disruptions in operation control a), Gantt’s diagram illustrating the changes in a system 
behavior b)
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Therefore, investigations are carried out aiming at MTN structure de-
sign robustness of which is higher than Rob0 (dist). In general case 
the robustness of a MTN depends on its structural features (such as 
redundancy, density, and so on) and on control mechanism employed 
in course of synchronization of concurrently executed flows. In that 
context, the present work attempts to determine these conditions for 
disruptions in operation control. Within this approach, the considered 
problem takes the following form: 

There is a given MTN network modelled by SCCP with the struc-
ture SC (1). The robustness of the system Rob0 (dist) to disruptions 
in operation control is known. The answer to the following question 
is sought: Are there any conditions (e.g. determining the methods of 
controlling the system) guaranteeing Rob(dist)>Rob0 (dist)?

4. Robustness Conditions

In our further considerations, let’s make an assumption that we 
are constraining to disruptions in operation control (e.g. disruptions in 
signaling – see Fig. 7). According to the previously made annotation 
(see point 2.4), it means that, as a result of a disruption, the state space 
does not change: 𝒫dist=𝒫.

In such a space, only states belonging to whirlpools make it pos-
sible to return to cyclic steady state. (see Fig. 7). It means that the 
increase in robustness (5) comes down to determining whether it is 
possible to reach cyclic steady states from states that do not belong to 
whirlpools. In other words, it is crucial to answer the following ques-
tion: Is the transition between structures of the whirlpool type and the 
tree type possible in space 𝒫 (Fig. 8a)?

As Fig. 8a) shows, that this kind of transition depend on the exist-
ence of a state that is, at the same time, an element of both the tree and 
the whirlpool. However, the presence of such states in space 𝒫 is not 
acceptable [3]. Transitions of this kind may occur only 
as a result of modification of elements (semaphores 
and indexes) of the proper states (e.g. S* and S4). For 
this purpose, the properties referring to states possess-
ing the same allocation are used.

Figure 8b) shows the implementation of process 
operations of the system from Fig. 2 caused by the dis-
ruption in state Sz1 (the disruption consists in change of 
access rights to the resource R3). As a result of the dis-
ruption, the system passes to the state Sz1, which leads 
to a deadlock (state S*). It is noticeable that the alloca-
tion of local processes of state S* is identical as the al-
location in the state S4: A*=A4. In practice, it means that 
in the state S* means of transport (buses and trams) are 

in the same stations as in the state S4. Hence, the deadlock is caused 
by improper assignment of access rights to resources (signaling that 
controls the order of service in stations). It means that it is enough 
to change the access rights to resources and the system will return to 
cyclic steady state. In the considered case, such a change comes down 
to changing semaphores from Z* to Z4 (on the resource R1 the access 
P2 is changed into the access for P3).

The example above shows that in certain situations (e.g. concern-
ing structures of the tree type) it is possible to return to cyclic steady 
state as a result of changing current values of semaphores (signaling). 
However, a condition must be fulfilled that the states, between which 
the transition happens, are characterized by the same allocation of 
processes. This observation leads to the following property:

Property 1
If in the space 𝒫 there are two states Sa ∈ VTr (S*), Sb ∈ VW (DC,2) 

(where: VTr (S*) –set of states belonging to the tree Tr(S*) (4), VW 
(DC,2) – set of states belonging to the whirlpool W(DC,2) (3)) possess-
ing the same allocation of local processes Aa = Ab, then the whirlpool 
W(DC,2) (and, consequently, cyclic steady state DC,2) is reachable 
from the tree Tr(S*).

The presence of states that make it possible to return to cyclic 
steady state increases the system’s robustness to disruptions in opera-
tion control. The evaluation of the presence of such states (as well 
as determining their number) requires searching through the states of 
𝒫 in order to identify the same allocation of processes. In the situa-
tion when the cyclic steady state DC,1 (being a part of the whirlpool 
W(DC,1) and the tree Tr(S*) are known, determining the states pos-
sessing the same allocation comes down to searching through all the 
admissible pairs of states, i.e. elements of the set VW (DC,1)×VTr (S*). 
The proper algorithm has the following form:

Fig. 8. An example of a return to cyclic steady state in the state space from Fig. 3

Algorithm 1

function StatesCoAll W D V D E D Tr S V S E SC W C W C Tr Tr( )) ( ), ( ) , ( ), ( ), , ,
* * *

1 1 1= ( ) ( ) = ( )( )
	 AC ← ∅
	 forall Sa ∈ VTr(S*)
		  forall Sb ∈ VW(DC,1)
			   if Aa = Ab then AC ← AC ∪ (Sa,Sb)
			   end
		  end
	 end
	 return AC
end
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Fig. 9. State space of the system from Fig. 1

Fig. 10. State space of the system from Fig. 1 with highlighted states possessing the same allocation (set AC) and states leading to them (set AD)

where:	 W(DC,1) =(VW (DC,1),EW (DC,1)), Tr(S* ) = VTr (S*), ETr(S*)) – 
input data: whirlpool related to cyclic steady state DC,1, and 
the tree leadig to the deadlock S*,

	 AC – set of pairs (Sa,Sb ) of states possessing the same alloca-
tion.

The result of Algorithm 1 is the set AC of pairs of states (Sa,Sb) 
possessing the same allocation: AC⊆VW (DC,1)×VTr (S*). If we as-
sume, for simplicity reasons, that the considered digraphs (W(DC,1), 
Tr(S*)) have the same number of states (determined by ld), the compu-
tational complexity of the proposed Algorithm 1 is estimated by the 
quadratic function f(ld) =  (ld2 ). 

The presented algorithm makes it possible to estimate the reach-
ability of only two selected digraphs W(DC,1), Tr(S* ) ∈ DG (DG – set 
of digraphs of the space 𝒫). Investigating the reachability between all 
the digraphs of the set DG comes down to evaluating the reachability 

of each pair of this set. The computational complexity of a procedure 

of this kind amounts to: f ld dg dg dg ld dg DG( , ) ( ) ( | |)= − ⋅ =
1
2

2 2 .

Owing to the polynomial character of the computational complex-
ity function, the problem of evaluating the reachability of whirlpools 
seen as subspaces of 𝒫 is easy to handle. 

It must be emphasized that all states of the set AC make it pos-
sible to return to the cyclic steady state as a result of changes in the 
values of semaphores. Therefore, using these states in the process of 
returning the system to the cyclic steady state enhances the system’s 
robustness to the existing disruptions:

	 Rob dist
VW AC AD

NT dist
( ) = + +

( )
	 (6)
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where:	 VW – set of states constituting whirlpools of the state 𝒫, AC 
- set of states possessing the same allocations, AD – set of 
states leading to the states of the set AC.

Contrary to (5), with the expression (6), the states that make it 
possible to return to cyclic steady state include not only states of the 
set VW, but also states with the same allocation (set AC) and all the 
states leading to them (set AD).

5. Numerical Example

The developed approach to determining states possessing the same 
allocation was used to evaluate the robustness of the system from Fig. 
1 to disruptions in operation control. For this purpose, the state space 
𝒫 (see Fig. 9) was determined with use of the method presented in [3]. 
The space 𝒫 includes 414 states, out which 198 states are elements of 
whirlpools (in the space there are two whirlpools leading to two cyclic 
steady states). The robustness (5) of such systems to disruptions in 
operation control (disruptions which do not lead to changes in state 
space) amounts to Rob(dist)=0.4783. In practice, it means that over a 
half of disruptions (if we assume that all disruption are equally prob-
able) lead to the stoppage of the system (deadlock).

The robustness of the system can be enhanced by taking into ac-
count states possessing the same allocation in the process of returning 
to cyclic steady state. These states were determined on the basis of 
algorithm 1. Figure 10 shows the space 𝒫 of the system from Fig. 1 
along with states with the same allocation (set AC) and states leading 
to them (set AD). Owing to the knowledge about these states it is pos-
sible to return to the cyclic steady state even when the system passes to 
a state belonging to a tree. An example of such a transition is present-
ed in Fig. 10 – the transition between the states S1, Sd1, S*, St1, S0. By 
taking into consideration states of the sets AC and AD the robustness 
of the system (6) can be increased to the value Rob(dist)=0.6891.

6. Conclusions

The article has discussed the major disruptions in the labor of sys-
tems with cyclic multimodal processes and focused mainly on disrup-
tions in operation control. In order to evaluate the robustness of NTN 
to this kind of disruptions the measure Rob(dist) has been introduced: 
it determines the system’s ability to return to the cyclic steady state.

In order to enhance the robustness of NTN, an approach based on 
a property which states that the return to the cyclic steady state is pos-
sible from states possessing the same allocation, is proposed.

In this case, the return is possible as a result of change in ac-
cess rights (semaphores) to the shared resources. The analyzed ex-
ample shows that owing to the fact that these states are classified as 
the so-called “safe” states the robustness of system can be increased 
by as much as 44% (the value Rob(dist) has risen from z 0.4783 up 
to 0.6891). 

The proposed algorithm of determining states possessing the same 
allocation is characterized by polynomial computational complexity. 
Therefore, it is possible to use this approach in networks with a scale 
that is met in practice. 

The use of the proposed conditions (Property 1) is restrained to 
disruptions in operation control. That is why, further investigations 
will focus on an attempt to expand the developed conditions to the 
area of disruptions including, among others, the structural disruption. 
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