PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical compaction of coking coals for carbonization in stamp-charging coke oven batteries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The density of the coal charge plays an important role in the coke quality. The increase of the bulk density usually improves the coke strength due to increased coal particle contact and increased coke density. There are a few possibilities to increase the coal charge bulk density: adjusting the grain size distribution or moisture content (drying), oil addition and mechanical treatment (e.g., partial briquetting or stamping). A renewed interest in stamp charging cokemaking technology has been observed in recent years, especially in Asia, but also in Europe (Poland, Germany and Ukraine). The paper presents the results of studies on the effects of selected factors on the coal cake density and mechanical strength i.e. stamping energy, coal type, water content and crushing fineness. There is possibility to influence these parameters in industrial conditions. The investigations were carried out with use of mechanical stamping apparatus and strength testing machine specially designed for this purpose.
Rocznik
Strony
151--161
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Institute for Chemical Processing of Coal, Zamkowa 1, 41803 Zabrze, Poland
  • Institute for Chemical Processing of Coal, Zamkowa 1, 41803 Zabrze, Poland
Bibliografia
  • 1. CHATTERJEE A., SINGH B.K., BAUER G., VEIT G., 2001. The changeover of the coke production at Tata Steel from top charging to stamp charging technology, Cokemak. Int., 13, 75.
  • 2. CZAPLICKI A., JANUSZ M., 2012. Preparation of Coal Batch for Top Loading: Experimental Research, Coke and Chem. 55, 366-371.
  • 3. DASH P.S., KRISHNAN S.H., SHARMA R., BANERJEE P.K., HALDAR S.K., 2005. Laboratory scale investigation to improve the productivity of stamp charge coke oven trough optimization of bulk density of coal cake, ISIJ Int., 45, 1577-1586.
  • 4. FUERSTENAU D.W., ROSENBAUM J.M., LASKOWSKI J.S., 1983. Effect of surface functional groups in the floatability of coal, Colloids and Surfaces, 8, 153–174.
  • 5. GOSIEWSKA A., DRELICH J., LASKOWSKI J.S., PAWLIK M., 2002. Mineral matter distribution on coal surface and its effect on coal wettability, J. of Colloid and Interface Science, 247, 107–116.
  • 6. GURAL V.V., KRIVONOS V.V., RUDYKA V.I., TARUTA A.A., 2008. Metallurgical-Coke Production on the Basis of Rammed Batchand Dry Slaking: An Efficient, Ecologically Sound and Energy-Saving Technology, Coke and Chem., 51, 309.
  • 7. GUTIERREZ-RODRIGUEZ J.A., APLAN F.F., 1984. The effect of oxygen on the hydrophobicity and floatability of coal, Colloids and Surfaces, 12, 27–51.
  • 8. HERMANN W (2002). Coke Reactivity and Coke Strength, Part 1: Coke Reactivity – Summary and Outlook, Cokemak. International,14, 18.
  • 9. KARCZ A., 1991. Koksownictwo, AGH, Kraków.
  • 10. KARCZ A., STRUGALA A., 2008. Increasing chances of utilizing the domestic coking coal resources through technological operations in coal blend preparation, Miner. Resour. Manag., 24, 5-18.
  • 11. KRISHNAN S.H., DASH P.S., GUHA M., KUMAR D., DESHPANDE D.P., 2004. Application of Binder in Stamp Charge Coke Making, ISIJ Int.,44, 1150.
  • 12. KURUNOV I., LIZOGUB P., GOLUBEV O., 2010. Coal Preparation, Coking, and Slaking in China and Japan, Coke and Chem., 9, 22.
  • 13. KUYUMCU H.Z., SANDER S., 2014. Stamped and pressed coal cakes for carbonization in by-product and heat-recovery coke ovens, Fuel, 121, 48-56.
  • 14. LASKOWSKI J., 2001. Coal Flotation and Fine Coal Utilization. Elsevier.
  • 15. LODDO R., ESPOSITI A., PIVOT S., 2011. A modern design approach in the new stamp charging coke oven batteries in Dillingen, The 6th European Coke and Ironmaking Congress, session 19, Dusseldorf.
  • 16. LOISON R., FOCH P., BOYER A., 1989. Coke: Quality and Production, Butterworths, London, 353.
  • 17. ORUMWENSE F.O., 1998. Estimation of the wettability of coal from contact angles using coagulants and flocculants, Fuel, 77, 1107-1111.
  • 18. STRUGAŁA A., 2002. Change in porosity during carbonization of bitouminous coals: effect due to pores with radii less than 2500nm, Fuel, 81, 1119.
  • 19. VANDER T., ALVAREZ R., FERRARO M., FOHL J., HOFHNERR K., HUART J.M., MATILLA E., PROPSON, WILLMERS R., VD VELDEN B., 1996. Coke Quality Improvement Possibilities and Limitations, 3-rd International Cokemak. Congr. Proc., Gent, 28 -37.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3516b5b5-1f0d-4d5a-bd69-d4c575743070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.