Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To examine the efficiency of La and Ce recycling processes from the sludge, two major methods were used, namely leaching and precipitation. The findings suggest that 12% of La and 24.2% of Ce were contained in the sludge. The sludge was leached in an optimum condition of 6N HCl at a temperature of 70°C with a 3g/50 mL solid/liquid ratio for 3 h to obtain a 100% leaching recovery of La and Ce. After pH adjustment of the obtained La and Ce optimum leaching solution to 6 with NH4OH and a simultaneous addition of H2O2 in a ratio of 1:1, Ce precipitated out with 65.9% recovery. On the other hand, La was not precipitated. The results obtained in this study reveal that leaching and pH adjustment method could be used to recover the valuable REE of La and Ce from glass polishing sludge in order to reach the goals of resource recycling.
Czasopismo
Rocznik
Tom
Strony
26--30
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Da-Yeh University, Department of Environmental Engineering, Changhua, Taiwan, 515 R.O.C.
autor
- Da-Yeh University, Department of Environmental Engineering, Changhua, Taiwan, 515 R.O.C.
autor
- Da-Yeh University, Department of Environmental Engineering, Changhua, Taiwan, 515 R.O.C.
autor
- Da-Yeh University, Department of Environmental Engineering, Changhua, Taiwan, 515 R.O.C.
autor
- The University of the West Indies, Department of Biological and Chemical Science, Cave Hill Campus, Barbados-1100
autor
- Da-Yeh University, Department of Environmental Engineering, Changhua, Taiwan, 515 R.O.C.
Bibliografia
- 1. Hung, C.E. (2014). Resource Recovery, Leaching Modeling, Life Cycle Assessment and Carbon Footprint of Waste Glass Polishing Powder, Unpublished doctoral dissertation, University of Da-Yeh, Changhua, Taiwan.
- 2. Pavel, J., Pavel, K., Jakub, E., Martin, S., Lubos, V., Martin, P., Jiri, H., Karel, M. & Miroslaw, S. (2015). Recovery of Cerium Dioxide from Spent Glass-Polishing Slurry and Its Utilization as a Reactive Sorbent for Fast Degradation of Toxic Organophosphates. Adv. Mater. Sci. Eng. 2015, Article ID 241421. DOI: 10.1155/2015/241421.
- 3. Tan, Q., Deng, C. & Li, J. (2017). Enhanced recovery of rare earth elements from waste phosphors by mechanical activation. Cleaner. Production. 142(4), 2187–2191. DOI: 10.1016/j.jclepro.2016.11.062.
- 4. Padhan, E., Nayak, A. K. & Sarangi, K. (2017). Recovery of neodymium and dysprosium from NdFeB magnet swarf. Hydrometallurgy. 174, 210–215. DOI: 10.1016/j.hydromet.2017.10.015.
- 5. Bolanz, R. M., Kiefer, S., Gottlicher, J. & Steininger, R. (2018). Hematite (α-Fe2O3) – A potential Ce4 + carrier in red mud. Sci. Total. Environ. 622–623, 849–860. DOI: 10.1016/j. scitotenv.2017.12.043.
- 6. Lee, C.H., Chang, Y.W., Popuri, S.R., Hung, C.E., Liao, C.H., Chang, J-E. & Chen,W. (2018). Recovery of silicon, copper and aluminum from scrap silicon wafers by leaching and precipitation. Environ. Eng. Manag. J. 17(3), 561–568. DOI: 10.1177/0734242X13479433.
- 7. Lee, C.H., Liao, C.H., Popuri, S.R. & Hung, C.E. (2017). Integrated process development for the recovery of Europium and Yttrium from waste fluorescent powder. Mater. Cycles. Waste. Manag. 19(3), 1235–1243. DOI: 10.1007/s10163-016-0515-y.
- 8. Kim, R., Cho, H., Han, K.N., Kim, K., Mun, M. (2016). Optimization of Acid Leaching of Rare-Earth Elements from Mongolian Apatite-Based Ore. Minerals. 6, 63. DOI: 10.3390/min6030063.
- 9. Yuan, H., Hong, W., Zhou, Y., Pu, B., Gong, A., Xu, T., Yang, Q., Li, F., Qiu, L., Zhang, W. & Liu, Y. (2018). Extraction and back-extraction behaviors of 14 rare earth elements from sulfuric acid medium by TODGA. Rare Earths. 36(6), 642–647. DOI: 10.1016/j.jre.2018.01.011.
- 10. Sobianowska-Turek, A. (2018). Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells. Waste. Manag. 77, 213–219. DOI: 10.1016/j.wasman.2018.03.046.
- 11. Lee, C.H., Yen, H.Y., Liao, C.H., Popuri, S.R., Cadogan, E. & Hsu, C.J. (2017). Hydrometallurgical processing of Nd–Fe–B magnets for Nd purifi cation. J. Mater. Cycles. Waste. Manag. 19(1), 102–110. DOI: 10.1007/s10163-015-0382-y.
- 12. Önal, M.A.R., Aktan, E., Borra, C.R., Blanpain, B., Van Gerven, T. & Guo, M. (2017). Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery. Hydrometallurgy. 167, 115–123. DOI: 10.1016/j.hydromet.2016.11.006.
- 13. Ferdowsi, A. & Yoozbashizaden, H. (2017). Process optimization and kinetics for leaching of cerium, lanthanum and neodymium elements from iron ore waste’s apatite by nitric acid. T. Nonferr. Metal. Soc. 27(2), 420–428. DOI: 10.1016/S1003-6326(17)60048-7.
- 14. de Vasconcellos, M.E., da Rocha, S.M.R., Pedreira, W.R., Queiroz, C.A.d.S. & Abrão, A. (2008). Solubility behavior of rare earths with ammonium carbonate and ammonium carbonate plus ammonium hydroxide: Precipitation of their peroxicarbonates. J. Alloys Comp. 451, (1–2), 426–428. DOI: 10.1016/j.jallcom.2007.04.163.
- 15. Wang, J., Huang, X., Cui, D., Wang, L., Feng, Z., Hu, B., Long, Z. & Zhao, N. (2017). Recovery of rare earths and aluminum from FCC waste slag by acid leaching and selective precipitation. J. Rare Earths. 35(11), 1141–1148. DOI: 10.1016/j.jre.2017.05.011.
- 16. Ozawa, M., Onoe, R. & Kato, H. (2006). Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation. J. Alloys Comp. 408–412, 556–559. DOI: 10.1016/j.jallcom.2004.12.073.
- 17. Khawassek , Y.M., Eliwa , A.A., Gawad , E.A. & Abdo, S.M. (2015). Recovery of rare earth elements from El-Sela effluent solutions. J. Radiat. Res. Appl. Sci. 8(4), 583–589. DOI: 10.1016/j.jrras.2015.07.002.
- 18. Akinc, M., Sordelet, D.J. & Munson, M. (1988). Formation, structure, and decomposition of lanthanide basic carbonates. J. Adv. Ceram. Mat. 3(3), 211–216. DOI: 10.1111/j.1551-2916.1988.tb00203.x.
- 19. Panchula, M.L. & Akinc, M. (1996). Morphology of lanthanum carbonate particles prepared by homogeneous precipitation. J. Eur. Ceram. Soc. 16(8), 833–841. DOI: 10.1016/0955-2219(95)00211-1.
- 20. Umeda, K. & Abrao, A. (1975). Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange [Abstract]. Instituto de Energia Atomica. 8(9), No. 395, 46 [in Portuguese]. Retrieved January 10, 2019, from https://inis.iaea.org.
- 21. Kim, J.K., Kim, U.S., Byeon, M.S., Kang, W.K., Hwang, K.T. & Cho, W.S. (2011). Recovery of cerium from glass polishing slurry. J. Rare Earths. 29(11), 1075–1078. DOI: 10.1016/S1002-0721(10)60601-1.
- 22. Qi, D. (2018). Hydrometallurgy of Rare Earths: Extraction and Separation. Cambridge, MA: Elsevier. Book chapter 7, 671–741.
- 23. Kondo, K., Matsuo, T. & Matsumoto, M. (2015). Adsorptive separation of La, Ce and Pr using microcapsules containing 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester. Hydrometallurgy. 152, 204–213. DOI: 10.1016/j.hydromet.2015.01.004.
- 24. TEPA (Taiwan Environmental Protection Agency). (1998). Retrieved November 15, 2018, from https://www.epa.gov.tw/niea/6362E9621F5D38DC. [in Chinese]
- 25. TEPA (Taiwan Environmental Protection Agency). (1992). Retrieved November 15, 2018, from https://www.epa.gov.tw/niea/7FB27BAD6A4AC928. [in Chinese]
- 26. TEPA (Taiwan Environmental Protection Agency). (1993). Retrieved November 15, 2018, from https://www.epa.gov.tw/niea/D650FF755904A079. [in Chinese]
- 27. Kuchma, M.H., Komanski, C.B., Colon, J., Teblum, A., Masunov, A.E., Alvarado, B., Babu, S., Seal, S., Summy, J. & Baker, C.H. (2010). Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomed-Nanotechnol. 6(6), 738–744. DOI: 10.1016/j.nano.2010.05.004.
- 28. Benavides, S. (2009). Corrosion control in the aerospace industry. Woodhead Publishing: Elsevier.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3514396d-d700-45b7-8f59-22a634aa7411