Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Nowa metoda obliczeniowa dla elementu pontonowego morskich platform stałych do wydobycia ropy i gazu
Języki publikacji
Abstrakty
Currently, a significant attention is given to the development of fuel and energy resources on the shelf, particularly the oil and gas fields of the Caspian Sea. Addressing this problem requires investigating a broad range of scientific and technical issues. One of the most important problems is the transportation of the support block of offshore platforms, which serves as the main element of hydraulic structures designed for oil and gas production at great depths. This research relates to offshore hydraulic engineering, specifically the construction of offshore platforms whose support structures consist of support blocks transported afloat. The article proposes a method for analyzing and optimizing geometric shapes while considering the physical properties of pontoon materials, enabling the resolution of specific practical problems. The study examines the influence of various factors on the distribution of deformations and stresses in pontoons. A general method for linearizing thin-walled structures with variable geometric parameters is introduced, offering improved convergence. An efficient calculation technique based on the small parameter method is developed. Using these methods, a computational algorithm is formulated, and a set of application programs is established. Accordingly, problems in the general theory of shells are addressed. In structures designed to ensure sufficient strength and manufacturability, all real material properties are considered, leading to more accurate calculation procedures. For a broad class of nonlinear problems in structural mechanics, accounting for the physical properties of materials allows for the identification of additional strength reserves.
Obecnie wiele uwagi poświęca się rozwojowi zasobów paliw i energii na szelfie, w szczególności złożom ropy naftowej i gazu ziemnego na Morzu Kaspijskim. Rozwiązanie tego problemu wymaga analizy szerokiego zakresu zagadnień naukowych i technicznych. Jednym z kluczowych problemów jest transport bloku podporowego platform morskich, który stanowi główny element konstrukcji hydrotechnicznych przeznaczonych do wydobycia ropy i gazu na dużych głębokościach. Niniejsze badanie dotyczy morskiej inżynierii hydrotechnicznej, a w szczególności budowy platform morskich, których konstrukcje nośne składają się z bloków podporowych transportowanych na wodzie. W artykule zaproponowano metodę analizy i optymalizacji kształtów geometrycznych z uwzględnieniem właściwości fizycznych materiałów, z których wykonane są pontony, umożliwiającą rozwiązanie konkretnych problemów praktycznych. W pracy zbadano wpływ różnych czynników na rozkład odkształceń i naprężeń w pontonach. Przedstawiono ogólną metodę linearyzacji konstrukcji cienkościennych o zmiennych parametrach geometrycznych, oferującą lepszą zbieżność. Opracowano skuteczną technikę obliczeniową opartą na metodzie małego parametru. Korzystając z tych metod, sformułowano algorytm obliczeniowy oraz opracowano zestaw programów użytkowych. W rezultacie rozwiązano problemy z zakresu ogólnej teorii powłok. W konstrukcjach zaprojektowanych w celu zapewnienia wystarczającej wytrzymałości i możliwości produkcji, uwzględniane są wszystkie rzeczywiste właściwości materiałowe, co prowadzi do dokładniejszych procedur obliczeniowych. Dla szerokiej klasy nieliniowych problemów mechaniki konstrukcji, uwzględnienie właściwości fizycznych materiałów pozwala na identyfikację dodatkowych rezerw wytrzymałościowych.
Czasopismo
Rocznik
Tom
Strony
188--198
Opis fizyczny
Bibliogr. 82 poz.
Twórcy
autor
- "Oil Gas Scientific Research Project” Institute, SOCAR, Azerbaijan
- Azerbaijan University of Architecture and Construction
autor
- "Oil Gas Scientific Research Project” Institute, SOCAR, Azerbaijan
- Azerbaijan University of Architecture and Construction
autor
- Azerbaijan University of Architecture and Construction
Bibliografia
- Abdrakhmanova L.K., Mukhamadiyarov A.V., Suleymanov I.I., Kholkin N.A., Yakovleva A.F., 2023. Calculation of normal crack opening width of reinforced concrete beams under bending. SOCAR Proceedings, 1: 131–134. DOI: 10.5510/OGP20230100815.
- Agapov V.P., Bardysheva Yu.A., Minakov S.A., 2010. Accounting for physical and geometric nonlinearity in calculations of reinforced concrete slabs and shells of variable thickness by the finite element method. Structural Mechanics and Analysis of Constructions, 5: 62–66.
- Amaechi C.V., Reda A., Butler H.O., Ja’e I.A., An C., 2022. Review on fixed and floating offshore structures. Part I: types of platforms with some applications. Journal of Marine Science and Engineering, 10(8): 1074. DOI: 10.3390/jmse10081074.
- Aslanov L.F., 2022. Optimization of the calculation of the piles of fixed offshore platforms. [In:] El-Askary H., Erguler Z.A., Karakus M., Chaminé H.I. (eds.), Research developments in geotechnics, geo-informatics and remote sensing. CAJG 2019. Advances in Science, Technology & Innovation. Springer, Cham. DOI: 10.1007/978-3-030-72896-0_32.
- Aslanov L.F., Aslanli U.L., 2024a. Determination of load-bearing capacity of piles used in stationary offshore platforms. SOCAR Proceedings, 1: 116–123. DOI: 10.5510/OGP20240100949.
- Aslanov L.F., Aslanli U.L., 2024b. Study of marine hydraulic structures under seismic effects. [In:] Ksibi M., Sousa A., Hentati O., Chenchouni H. Velho J.L., Negm A., Rodrigo-Comino J., Hadji R., Chakraborty S., Ghorbal A. [eds]. Recent advances in environmental science from the Euro-Mediterranean and surrounding regions. 4th Edition. EMCEI 2022. Advances in Science, Technology & Innovation. Springer, Cham. DOI:10.1007/978-3-031-51904-8_193.
- Aslanov L.F., Aslanli U.L., 2024c. Study of the stress-strain state of the pontoon element of the support block. SOCAR Proceedings, 2: 115–121. DOI: 10.5510/OGP20240200976.
- Aslanov L.F., Aslanov F.L., 2024a. Choosing an effective design solution for fixing offshore hydro-technical structures to shelf ground. [In:] Çiner A., et al. Recent research on geotechnical engineering, remote sensing, geophysics and earthquake seismology. MedGU 2021. Advances in Science, Technology & Innovation. Springer, Cham. DOI: 10.1007/978-3-031-43218-7_22.
- Aslanov L.F., Aslanov F.L., 2024b. Some tasks of increasing and identifying the reserves of the bearing capacity of anchor fastenings of offshore fixed platforms. [In:] Bezzeghoud M., et al. Recent research on geotechnical engineering, remote sensing, geophysics and earthquake seismology. MedGU 2022. Advances in Science, Technology & Innovation. Springer, Cham. DOI: 10.1007/978-3-031-48715-6_10.
- Avcu A., Seyedzavvar M., Boğa C., Choupani N., 2024. Characterizing the effects of liner and fiber-reinforced resin composite shell on fracture energy in type-III high-pressure composite tanks. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46: 13. DOI: 10.1007/s40430-023-04598-9.
- Ayhan A.O., 2011. Three-dimensional fracture analysis using tetrahedral enriched elements and fully unstructured mesh. International Journal of Solids and Structures, 48(3–4): 492–505. DOI:10.1016/j.ijsolstr.2010.10.012.
- Aydin A.C., Yaman Z., Ağcakoca E., Kiliç M., Maali M., Dizaji A.A., 2020. CFRP Effect on the buckling behavior of dented cylindrical shells. International Journal of Steel Structures, 20: 425–435. DOI: 10.1007/s13296-019-00294-4.
- Bathe K.-J., Brezzi F., Marini L., 2011. The MITC9 shell element in plate bending: Mathematical analysis of a simplified case. Computational Mechanics, 47(6): 617–626. DOI: 10.1007/s00466-010-0565-2.
- Becker W.T., 2022. Brittle fracture in a large grain storage bin. Journal of Failure Analysis and Prevention, 22: 2012–2022. DOI: 10.1007/s11668-022-01505-7.
- Borwein J.M., Skerritt M.B., 2012. An introduction to modern mathematical computing: with mathematica. Springer New York. DOI:10.1007/978-1-4614-4253-0.
- Bovo M., Barbaresi A., Torreggiani D., 2020. Definition of seismic performances and fragility curves of unanchored cylindrical steel legged tanks used in wine making and storage. Bulletin of Earthquake Engineering, 18: 3711–3745. DOI: 10.1007/s10518-020-00841-z.
- Chapelle D., Bathe K.J., 2011. The finite element analysis of shells - fundamentals, computational fluid and solid mechanics. 2nd Edition. Springer Berlin, Heidelberg. DOI: 10.1007/978-3-642-16408-8.
- Chapra S.C., Canale R.P., 2014. Numerical methods for engineers. McGraw-Hill Education, New York.
- Cheng X., Chen J., Luo B., 2022. Reduced sloshing effect in steeltanks. International Journal of Steel Structures, 22: 1474–1496 DOI: 10.1007/s13296-022-00652-9.
- Chikhi A., Djermane M., 2018. Effect of local geometrical imperfection on dynamic buckling of cylindrical storage tanks. Asian Journal of Civil Engineering, 19: 189–203. DOI: 10.1007/s42107-018-0017-4.
- Elgridly E.A., Fayed A.L., Ali A.A., 2022. Efficiency of pile groups in sand soil under lateral static loads. Innovative Infrastructure Solutions, 7: 26. DOI: 10.1007/s41062-021-00628-4.
- Eliseev V.V., Vetyukov Y.M., 2010. Finite deformation of thin shells in the context of analytical mechanics of material surfaces. Acta Mechanica, 209: 43–57. DOI: 10.1007/s00707-009-0154-7.
- Eliseev V.V., Vetyukov Y.M., 2014. Theory of shells as a product of analytical technologies in elastic body mechanics. Shell Structures: Theory and Applications, 3: 81–85. DOI: 10.1201/b15684-18.
- Eliseev V.V., Vetyukov Y.M., Zinov’eva T.V., 2011. Divergence of a helicoidal shell in a pipe with a flowing fluid. Journal of Applied Mechanics and Technical Physics, 52: 450–458. DOI: 10.1134/S0021894411030151.
- Filippenko G.V., 2016. The vibrations of reservoirs and cylindrical supports of hydro technical constructions partially submerged into the liquid. [In:] Evgrafov A. (ed). Advances in mechanical engineering, lecture notes in mechanical engineering. Springer, Cham. DOI: 10.1007/978-3-319-29579-4_12.
- Gadjiyev M.A., Guseynov I.G., Gadjiyeva U.M., 2023. Stressstrain state and load ability of compressed pipe-concrete elements. SOCAR Procedings, SI1: 21–26. DOI: 10.5510/OGP2023SI100836.
- Gao C., Liu D., Xu C., Xie W., Zhang X., et al., 2024. Toward groupedreservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction. Nature Communications, 15: 740. DOI: 10.1038/s41467-024-44942-8.
- Giampieri A., Perego U., 2011. An interface finite element for the simulation of localized membrane-bending deformation in shells. Computer Methods in Applied Mechanics and Engineering, 200(29–32): 2378–2396. DOI: 10.1016/j.cma.2011.04.009.
- Gonçalves R.T., Suzuki H., Cenci F., Fujarra A.L.C., Hirabayashi S., 2019. Experimental study of the effect of the pontoon presence on the flow-induced motion of a semi-submersible platform with four square columns. ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Vol. 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology. Glasgow, Scotland, UK. DOI: 10.1115/OMAE2019-95250.
- Gontarovskyi P.P., Smetankina N.V., Garmash N.G., Melezhyk I.I., Protasova T.V., 2023. Three-dimensional stress-strain state analysis of the bimetallic launch vehicle propellant tank shell. Strength of Materials, 55: 916–926. DOI: 10.1007/s11223-023-00582-9.
- Gurkalo F., He C., Poutos K., He N., 2024. Effects of innovative reinforced concrete slit shaft configuration on seismic performance of elevated water tanks. Scientific Reports, 14: 6113. DOI: 10.1038/s41598-024-56851-3.
- Hajiyev M.A., Huseynov I.G., Hajiyeva U.M., Alaeva S.M., 2024. Calculation of metal elements deflection using a three-line strain diagram. SOCAR Proceedings, 2: 109–114. DOI: 10.5510/OGP20240200975.
- Hansen E.L.M.B., Silva F.M.A., 2022. Nonlinear vibration analysis of a partially filled multi-layer cylindrical tank: consideration of the sloshing effects in the fluid–structure interaction. Journal of the Brazilian Society of Mechanical Sciences and Engineering,44: 484. DOI: 10.1007/s40430-022-03800-8.
- Hasanov F.G., 2022. Sress-strain analysis and optimization of the geometric shape of cylindrical oilfield reservoirs. SOCAR Proceedings, SI2: 48–52. DOI: 10.5510/OGP2022SI200749.
- Holtschoppen B., Knoedel P., 2024. Seismic response of slender storage tanks on tube feet or skirt support. Bulletin of Earthquake Engineering, 22: 55–73. DOI: 10.1007/s10518-023-01704-z.
- Ibrahimov Kh.M., Hajiyev A.A., Huseynova N.I., Asadova G.Sh., 2024. Consideration of the geological and technical condition of the reservoir and wellbore bottom zone in the selection of the cement composition applied to the production wellbore flow zone. Scientific Petroleum, 1: 36–43. DOI: 10.53404/Sci.Petro.20240100055.
- Ishanov T.R., 2018. Finite-element analysis of the stress-strain state of thin shells taking into account the transverse shear for various variants of approximation of angular displacements. PhD Thesis.VSU, Volgograd.
- Iskandarov N.Sh., 2022. Improving the accuracy of temperature measurements in heat supply systems. SOCAR Proceedings, 2:84–87. DOI: 10.5510/OGP20220200679.
- Ismayilov Sh.Z., Shmoncheva Y.Y., Jabbarova G.V., 2024. Development of expandable pipe technology: double-acting expander. Scientific Petroleum, 1: 44–49. DOI: 10.53404/Sci.Petro.20240100056.
- Jamalbayov M.A.,Hasanov I.R., Dogan M.O., Jamalbayli T.M.,2024. A hybrid modeling approach: dynamic simulation of two-phase fluid flow in compacting gas condensate reservoirs using potential flow theory. Scientific Petroleum, 1: 28–35. DOI: 10.53404/Sci. Petro.20240100054
- Jassim A., Ganjian N., Eslami A., 2022. Design and fabrication of frustum confining vessel apparatus for model pile testing in saturated soils. Innovative Infrastructure Solutions, 7, 280. DOI:10.1007/s41062-022-00877-x.
- Khabibullin M.Ya., Bakhtizin R.N., Gilaev G.G., 2022. A new method of designing a conversing mechanism of a hinged four-link of a pumping machine. SOCAR Proceedings, 2: 93–99. DOI:10.5510/OGP20220200681.
- Khabibullin M.Ya., Gilaev G.G., Bakhtizin R.N., 2023. Improvement of calculated strength indicators of cylindrical shells to reduce the metal consumption of equipment. SOCAR Proceedings, 2: 111–117. DOI: 10.5510/OGP20230200853.
- Khalil M., Ruggieri S., Tateo V., Nascimbene R., Uva G., 2023. A numerical procedure to estimate seismic fragility of cylindrical ground-supported steel silos containing granular-like material. Bulletin of Earthquake Engineering, 21: 5915–5947. DOI:10.1007/s10518-023-01751-6.
- Khosravi S., Goudarzi M.A., 2023. Seismic risk assessment of onground concrete cylindrical water tanks. Innovative Infrastructure Solutions, 8: 68. DOI: 10.1007/s41062-022-01002-8.
- Kiliç M., 2021. Buckling behavior of nose cone type steel tanks including horizontal imperfection. International Journal of Steel Structures, 21: 1408–1419. DOI: 10.1007/s13296-021-00512-y.
- Kiselev A.P., 2013. Linear and nonlinear deformation of elastic bodies based on three-dimensional FE with variable interpolation of displacements. PhD Thesis. VSU, Volgograd.
- Kiyamov Kh.G., 2010. Spline version of the finite element method for calculating the conjugation region of shells of complex geometry. [In:] 23rd International Scientific Conference: Mathematical Methods in Technology and Technology, SSTU, Saratov, 28–29June.
- Kolenchukov O.A., Kolenchukova T.N., Bashmur K.A., Bukhtoyarov V.V., Sergienko R.B., 2023. Discrete rough surface intensifiers in the thermal decomposition plants: current status and future potential. SOCAR Proceedings, SI1: 1–8. DOI: 10.5510/OGP2023SI100823.
- Kovtun A.V., Tabunenko V.O., Nesterenko S., Ivanchenko O.V., 2023. Determining the strength of tanks with fluid in the case of free dropping. International Applied Mechanics, 59: 107–113. DOI:10.1007/s10778-023-01204-2.
- Kumar S., Choudhary S.S., Burman A., 2024. Machine induced dynamic field responses of group pile with different pile arrangements.Geo-Engineering, 15: 8. DOI: 10.1186/s40703-024-00207-3.
- Labiodh B., Chalane M., 2023. Effect of localized defect positioning on buckling of axisymmetric cylindrical shells under axial compression. Mechanics of Solids, 58: 880–889. DOI: 10.3103/S0025654423600046.
- Lebedev A.E., Kapranova A.B., Gudanov I.S., Dolgin D.S., Vatagin A.A., 2021. Study of the influence of annular plate size on the stress-strain state of a vertical steel tank. Chemical and Petroleum Engineering, 57: 239–245. DOI: 10.1007/s10556-021-00924-x.
- Li Y., Fu J., Qian L., Wang H.Y., 2023. On the discussions of nonlinear terms in the large deformation model of thin-walled cylindrical shells. Mechanics of Solids, 58: 1214–1227. DOI: 10.3103/S0025654423600216 .
- Mahmood A., Alshameri B., Khalid M. H., Muhammad Jamil S.,2022. Comparative study of various interpretative methods of the pile load test. Innovative Infrastructure Solutions, 7: 102. DOI:10.1007/s41062-021-00697-5.
- Majumder M., Chakraborty D., 2021. Three-dimensional numerical analysis of under-reamed pile in clay under lateral loading. Innovative Infrastructure Solutions, 6: 55. DOI: 10.1007/s41062-020-00428-2.
- Mirsepahi M., Nayeri A., Lajevardi S.H., Mirhosseini S.M., 2021. Effect of multi-faced twin tunneling in different depths on a single pile. Innovative Infrastructure Solutions, 6, 42. DOI: 10.1007/s41062-020-00425-5.
- Pandian A.V.P., Arunachalam K.P., Avudaiappan S., Jasmin S.S., Bendezu Romero L.M., Awoyera P.O., 2024. Modification of response reduction factors of overhead water tanks based on ductility factor. Discover Applied Sciences, 6: 192. DOI: 10.1007/s42452-024-05762-z.
- Raikar R.G., Kangda M.Z., 2024. Blast mitigation of elevated water tanks equipped with resilient fluid viscous dampers. Innovative Infrastructure Solutions, 9: 238. DOI: 10.1007/s41062-024-01536-z.
- Sabaghzadeh H., Shafaee M., 2021. Reversal modeling and optimal design of hyper-elastic diaphragm in space fuel tanks. SN Applied Sciences, 3: 792. DOI: 10.1007/s42452-021-04785-0.
- Santos P.R., Donadon M.V., 2023. A semi-analytical model for buckling and stress analyses of pressurized composite cylinders. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45: 484. DOI: 10.1007/s40430-023-04350-3.
- Sharma R., Kim T.-W., Sha O.P., Misra S.C., 2010. Issues in offshore platform research – Part 1: Semi-submersibles. International Journal of Naval Architecture and Ocean Engineering, 2(3):155–170. DOI: 10.3744/JNAOE.2010.2.3.155.
- Sholomitskii A.A., Tsarenko S.N., Mogilny S.G., Aukazhieva Z.M., Kemerbaev N.T., 2023. Evaluation of stress-strain state of vertical steel tanks using laser scanning data. [In:] Radionov A.A., Gasiyarov V.R. (eds.), Proceedings of the 8th International Conference on Industrial Engineering. ICIE 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. DOI:10.1007/978-3-031-14125-6_86.
- Shubovich A.A., 2012. Analysis of the stress-strain state of shells of revolution in a geometrically nonlinear formulation with different variants of displacement interpolation. PhD Thesis. VSU, Volgograd.
- Sugiura S., Ariizumi R., Asai T., Azuma S.-I., 2024. Existence of reservoir with finite-dimensional output for universal reservoir computing. Scientific Reports, 14: 8448. DOI: 10.1038/s41598-024-56742-7.
- Suleimanov B.A., Abbasov E.M., Dyshin O.A., 2008a. Application of wavelet transforms to the solution of boundary value problems for linear parabolic equations. Computational Mathematics and Mathematical Physics, 48(2): 251–268. DOI: 10.1134/S0965542508020085.
- Suleimanov B.A., Abbasov E.M., Dyshin O.A., 2008b. Wavelet method for solving the unsteady porous-medium flow problem with discontinuous coefficients. Computational Mathematics and Mathematical Physics, 48(12): 2194–2210. DOI: 10.1134/S0965542508120099.
- Suleimanov B.A., Abbasov E.M., Dyshin O.A., 2009. Wavelet method for solving second-order quasilinear parabolic equations with a conservative principal part. Computational Mathematics and Mathematical Physics, 49(9): 1554–1566. DOI: 10.1134/S0965542509090103.
- Suleimanov B.A., Dyshin O.A., 2013. Application of discrete wavelet transform to the solution of boundary value problems for quasilinear parabolic equations. Applied Mathematics and Computation,219: 7036–7047. DOI: 10.1016/j.amc.2012.11.033.
- Suleimanov B.A., Ismailov F.S., Dyshin O.A., Guseynova N.I., 2012. Analysis of oil deposit exploration state on the base of multifractal approach. SOCAR Proceedings, 2: 20–28. DOI:10.5510/OGP20120200110.
- Suleimanov B.A., Ismailov F.S., Huseynova N.I., Veliev E.F., 2018. The application of fuzzy logic and multi-fractal analysis for reservoir management. Proceedings of The 6th International Conference on Control and Optimization with Industrial Applications,1: 34–36.
- Sun Y., Wang C., Wang W., Li T., Yang T., 2023. Dynamic response analysis of a small-scaled ACLNG storage tank under penetration and explosion loadings. Acta Mechanica Sinica, 39: 123110.DOI: 10.1007/s10409-023-23110-x.
- Veliyev E.F., Shirinov S.V., Mammedbeyli T.E., 2022. Intelligent oil and gas field based on artificial intelligence technology. SOCAR Proceedings, 4: 70–75. DOI: 10.5510/OGP20220400785.
- Wan J., Sun Y., He Y., Ji W., Li J., Jiang L., Jurado M.J., 2024. Development and technology status of energy storage in depleted gas reservoirs. International Journal of Coal Science & Technology, 11: 29. DOI: 10.1007/s40789-024-00676-y.
- Wang W., Mottershead J.E., Sebastian S.M., Patterson E. A., 2011. Shape features and finite'element model updating from fullfield strain date. International Journal of Solids and Structures,48(11–12): 1644–1657. DOI: 10.1016/j.ijsolstr.2011.02.010.
- Xue N.P., Wu Q., Yang R.S., Gao H.-J., Zhang Z., Zhang Y.-D., Li L., Guo J., 2023. Research on machining deformation of aluminum alloy rolled ring induced by residual stress. The International Journal of Advanced Manufacturing Technology, 125: 5669–5680. DOI: 10.1007/s00170-023-11068-y.
- Yang L., Zhang S., Qiu T., 2024. Buckling analyses of cylindrical shells with axial variable elastic modulus under external pressure. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46: 163. DOI: 10.1007/s40430-024-04742-z.
- Yaropolov V.A., Yaropolov Yu.V., 2012. Study of the influence of initial deviations of the shape of a spherical shell on stability by the finite element method. Advances in Current Natural Sciences,6: 127–128.
- Yeliseyev V.V., Zinovieva T.V., 2014. Two-dimensional (shell-type) and three-dimensional models for elastic thin-walled cylinder. PNRPU Mechanics Bulletin, 3: 50–70. DOI: 10.15593/perm.mech/2014.3.04.
- Zhang H., Ansary A.M.E., Zhou W., 2023. Nonlinear buckling analysis of conical steel tanks considering field-measured imperfections – a case study. Proceedings of the Canadian Society of Civil Engineering Annual Conference, CSCE 2021. Springer, Singapore. DOI: 10.1007/978-981-19-0507-0_28.
- Zinovieva T.V., 2012. Computational mechanics of elastic shells of revolution in mechanical engineering calculations. [In:] Zinovieva T.V. (eds.), Modern engineering: science and education. State Polytechnic University, Saint Petersburg.
- Zinovieva T.V., 2017. Calculation of shells of revolution with arbitrary meridian oscillations. [In:] Evgrafov A. (eds.), Advances in mechanical engineering. Lecture notes in mechanical engineering. Springer, Cham. DOI: 10.1007/978-3-319-53363-6_17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3510a3f1-2c6a-4d82-aea5-141d06bc6256
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.