PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive estimation method for determining inductor core losses in the medium frequency range using time response analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a novel approach for measuring losses in magnetic components intended for medium-frequency power electronic applications. The proposed method enables accurate determination of core losses in power inductors using only voltage and current measurements. Real inductors, consisting of a copper litz winding and low-loss core, are used to test the effectiveness of the method across multiple operating points. The estimation method is able to match the losses with 6.13% accuracy, showing that it is sufficient with only voltage and current measurements, and is efficient in estimating the losses with low overhead.
Rocznik
Strony
375--389
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab., wykr., wz.
Twórcy
  • AGH University of Krakow Poland
  • AGH University of Krakow Poland
  • King Abdullah University of Science and Technology, Saudi Arabia
  • AGH University of Krakow Poland
  • AGH University of Krakow Poland
autor
  • AGH University of Krakow Poland
  • AGH University of Krakow Poland
  • King Abdullah University of Science and Technology, Saudi Arabia
Bibliografia
  • [1] Bahmani A., Core loss evaluation of high-frequency transformers in high-power DC-DC converters, Proc. 13th International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, pp. 1–7 (2018), DOI: 10.1109/EVER.2018.8362341.
  • [2] Hou D., Mu M., Lee F.C., Li Q., New high-frequency core loss measurement method with partial cancellation concept, IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2987–2994 (2017), DOI: 10.1109/TPEL.2016.2573273.
  • [3] Imaoka J., Yu-Hsin W., Shigematsu K., Aoki T., Noah M., Yamamoto M., Effects of high-frequency operation on magnetic components in power converters, Proc. IEEE 12th Energy Conversion Congress Exposition – Asia (ECCE–Asia), Singapore, pp. 978–984 (2021), DOI: 10.1109/ECCEAsia49820.2021.9479365.
  • [4] Mannam R., Gorantla S.R., Vangala N., A practical technique to measure transformer losses in high frequency SMPS, SN Applied Sciences, vol. 1, no. 3, 227 (2019), DOI: 10.1007/s42452-019-0239-4.
  • [5] Rasekh N., Wang J., Yuan X., A novel in-situ measurement method of high-frequency winding loss in cored inductors with immunity against phase discrepancy error, IEEE Open Journal of the Industrial Electronics Society, vol. 2, pp. 545–555 (2021), DOI: 10.1109/OJIES.2021.3121088.
  • [6] Rodriguez-Sotelo D., Rodriguez-Licea M.A., Araujo-Vargas I., Prado-Olivarez J., Barranco-Gutiérrez A.I., Perez-Pinal F.J., Power Losses Models for Magnetic Cores: A Review, Micromachines, vol. 13, no. 3, 418, pp. 1–27 (2022), DOI: 10.3390/mi13030418.
  • [7] Wang J., Dagan K.J., Yuan X., Wang W., Mellor P.H., A practical approach for core loss estimation of a high-current gapped inductor in PWM converters with a user-friendly loss map, IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5697–5710 (2019), DOI: 10.1109/TPEL.2018.2867264.
  • [8] Ayachit A., Kazimierczuk M.K., Steinmetz Equation for Gapped Magnetic Cores, IEEE Magnetics Letters, vol. 7, pp. 1–4 (2016), DOI: 10.1109/LMAG.2016.2540609.
  • [9] Steinmetz C.P., On the law of hysteresis, Proceedings of the IEEE, vol. 72, no. 2, pp. 197–221 (1984), DOI: 10.1109/PROC.1984.12842.
  • [10] Matsumori H., Shimizu T., Wang X., Blaabjerg F., A practical core loss model for filter inductors of power electronic converters, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 1, pp. 29–39 (2018), DOI: 10.1109/JESTPE.2017.2761127.
  • [11] Sun H., Li Y., Lin Z., Zhang C., Yue S., Core loss separation model under square voltage considering DC bias excitation, AIP Advances, vol. 10, no. 1, 015229 (2020), DOI: 10.1063/1.5131561.
  • [12] Yue S., Yang Q., Li Y., Zhang C., Xu G., Core loss calculation of the soft ferrite cores in high frequency transformer under non-sinusoidal excitations, Proc. 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, Australia, pp. 1–5 (2017), DOI: 10.1109/ICEMS.2017.8056411.
  • [13] Barg S., Ammous K., Mejbri H., Ammous A., An improved empirical formulation for magnetic core losses estimation under nonsinusoidal induction, IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2146–2154 (2017), DOI: 10.1109/TPEL.2016.2555359.
  • [14] Yi L., Moon J., In situ direct magnetic loss measurement with improved accuracy for lossier magnetics, IEEE Transactions on Instrumentation and Measurement, vol. 71, no. 6001414 (2022), DOI: 10.1109/TIM.2022.3150877.
  • [15] Liu B., Chen W., Wang J., Chen Q., A practical inductor loss testing scheme and device with high frequency pulse width modulation excitations, IEEE Transactions on Industrial Electronics, vol. 68, no. 5, pp. 4457–4467 (2021), DOI: 10.1109/TIE.2020.2984985.
  • [16] Karthikeyan V., Rajasekar S., Pragaspathy S., Blaabjerg F., Core loss estimation of magnetic links in DAB converter operated in high-frequency non-sinusoidal flux waveforms, Proc. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India (2018), DOI: 10.1109/PEDES.2018.8707857.
  • [17] Grecki F., Drofenik U., Calorimetric medium frequency loss measurement of the foil inductor winding, Proc. IEEE 19th International Power Electronics and Motion Control Conference (PEMC), pp. 611−614 (2021), DOI: 10.1109/PEMC48073.2021.9432598.
  • [18] Jafari A. et al., Calibration-free calorimeter for sensitive loss measurements: case of high-frequency inductors, Proc. IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), Aalborg, Denmark (2020), DOI: 10.1109/COMPEL49091.2020.9265756.
  • [19] Kleeb T., Dombert B., Araújo S., Zacharias P., Loss measurement of magnetic components under real application conditions, Proc. 15th European Conference on Power Electronics and Applications (EPE), Lille, France (2013), DOI: 10.1109/EPE.2013.6631895.
  • [20] Papamanolis P., Guillod T., Krismer F., Kolar J.W., Transient calorimetric measurement of ferrite core losses up to 50 MHz, IEEE Transactions on Power Electronics, vol. 36, no. 3, pp. 2548–2563 (2021), DOI: 10.1109/TPEL.2020.3017043.
  • [21] Marin-Hurtado A.J., Rave-Restrepo S., Escobar-Mejía A., Calculation of core losses in magnetic materials under nonsinusoidal excitation, Proc. 13th International Conference on Power Electronics (CIEP), Guanajuato, Mexico, pp. 87–91 (2016), DOI: 10.1109/CIEP.2016.7530736.
  • [22] Yue S., Yang Q., Li Y., Zhang C., Core loss calculation for magnetic materials employed in SMPS under rectangular voltage excitations, AIP Advances, vol. 8, no. 5, 056121 (2018), DOI: 10.1063/1.5007201.
  • [23] Zhao H., Eldeeb H.H., Zhang Y., Zhan Y., Xu G., Mohammed O.A., An improved core loss model of ferromagnetic materials considering high-frequency and non-sinusoidal supply, IEEE Transactions on Industry Applications, vol. 57, no. 4, pp. 4336–4346 (2020), DOI: 10.1109/IAS44978.2020.9334779.
  • [24] Wang J., Yuan X., Rasekh N., Triple Pulse Test (TPT) for Characterizing Power Loss in Magnetic Components in Analogous to Double Pulse Test (DPT) for Power Electronics Devices, Proc. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, pp. 4717–4724 (2020), DOI: 10.1109/IECON43393.2020.9255039.
  • [25] Baszyński M., Chojowski M., Dziadecki A., Stobiecki A., Dudek R., Skotniczny J., A Method and a Three Source Converter for Medium Frequency Magnetic Elements Losses Measurement, IEEE Transactions on Industrial Electronics, vol. 70, iss. 12 (2023), DOI: 10.1109/TIE.2023.3239874.
  • [26] Wang W.B., Pansier F., Haan S.D., Ferreira J.A., Novel and simple calorimetric methods for quantifying losses in magnetic core and GaN transistor in a high frequency boost converter, Chinese Journal of Electrical Engineering, vol. 2, no. 2, pp. 68–75 (2016), DOI: 10.23919/CJEE.2016.7933128.
  • [27] Mu M., Li Q., Gilham D., Lee F.C., Ngo K.D.T., New core loss measurement method for high frequency magnetic materials, IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4374–4381 (2013), DOI: 10.1109/TPEL.2013.2286830.
  • [28] Mu M., Lee F.C., Li Q., Gilham D., Ngo K.D.T., A high frequency core loss measurement method for arbitrary excitations, Proc. Appl. Power Electron. Conf. Expo., pp. 157–162 (2011), DOI: 10.1109/APEC.2011.5744590.
  • [29] Sanusi B.N., Ouyang Z., Magnetic Core Losses under Square-wave Excitation and DC Bias in High Frequency Regime, Proc. 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 633–639 (2022), DOI: 10.1109/APEC43599.2022.9773563.
  • [30] Chojowski M., Baszyński M., Dziadecki A., Dudek R., Stobiecki A., Time Domain Analysis for Measuring Core Losses in Inductive Elements for Power Electronics: An Investigation Study, IEEE Access (2023), DOI: 10.1109/ACCESS.2023.3312544.
  • [31] Li Z., Han W., Xin Z., Liu Q., Chen J., Loh P.C., A Review of Magnetic Core Materials, Core Loss Modeling and Measurements in High-Power High-Frequency Transformers, CPSS Transactions on Power Electronics and Applications, vol. 7, no. 4, pp. 359–373 (2022), DOI: 10.24295/CPSSTPEA.2022.00033.
  • [32] Pasko S.W., Kazimierczuk M.K., Grzesik B., Self-Capacitance of Coupled Toroidal Inductors for EMI Filters, IEEE Transactions on Electromagnetic Compatibility, vol. 57, iss. 2, pp. 216–223 (2015), DOI: 10.1109/TEMC.2014.2378535.
  • [33] Javidi F.N., Nymand M., A New Method for Measuring Winding AC Resistance of High-Efficiency Power Inductors, IEEE Transactions on Power Electronics, vol. 33, iss. 12, pp. 10736–10747 (2018), DOI: 10.1109/TPEL.2018.2805867.
  • [34] Kazimierczuk M.K., High-Frequency Magnetic Components, 2nd Edition, Wiley (2014), DOI: 10.1002/9781118717806.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-350c590e-dd34-4093-84d8-fad00324f71f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.