Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper intends to study the propagation of horizontally polarized shear waves in an elastic medium with void pores constrained between a vertically inhomogeneous and an anisotropic magnetoelastic semi-infinite media. Elasto-dynamical equations of elastic medium with void pores and magnetoelastic solid have been employed to investigate the shear wave propagation in the proposed three-layered earth model. Method of separation of variables has been incorporated to deduce the dispersion relation. All possible special cases have been envisaged and they fairly comply with the corresponding results for classical cases. The role of inhomogeneity parameter, thickness of layer, angle with which the wave crosses the magnetic field and anisotropic magnetoelastic coupling parameter for three different materials has been elucidated and represented by graphs using MATHEMATICA.
Wydawca
Czasopismo
Rocznik
Tom
Strony
139--149
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- Department of Applied MathematicsIndian Institute of Technology (Indian School of Mines), Dhanbad, India
autor
- Department of Applied MathematicsIndian Institute of Technology (Indian School of Mines), Dhanbad, India
autor
- Department of Applied MathematicsIndian Institute of Technology (Indian School of Mines), Dhanbad, India
Bibliografia
- 1. Acharya DP, Roy I, Sengupta S (2009) Effect of magnetic field and initial stress on the propagation of interface waves in transversely isotropic perfectly conducting media. Acta Mech 202(1–4):35–45
- 2. Achenbach JD (1973) Wave propagation in elastic solids. North-holland series in applied mathematics and mechanics. North-Holland Publishing Company, New York
- 3. Biot MA (1965) Mechanics of incremental deformations. Wiley, New York
- 4. Birsan M (2000) Existence and uniqueness of weak solution in the linear theory of elastic shells with voids. Lib Math 20:95–106
- 5. Bullen KE, Bolt BA (1985) An introduction to the theory of seismology. Cambridge University Press, Cambridge
- 6. Chattaraj R, Samal SK (2013) Love waves in the fiber-reinforced layer over a gravitating porous half-space. Acta Geophys 61(5):1170–1183
- 7. Chattopadhyay A, Choudhury S (1990) Propagation, reflection and transmission of magnetoelastic shear waves in a self-reinforced medium. Int J Eng Sci 28(6):485–495
- 8. Chattopadhyay A, Gupta S, Kumari P, Sharma VK (2012) Effect of point source and heterogeneity on the propagation of SH-waves in a viscoelastic layer over a viscoelastic half space. Acta Geophys 60(1):119–139
- 9. Chaudhary S, Kaushik VP, Tomar SK (2004) Reflection/transmission of plane SH-waves through a self-reinforced elastic layer between two half-spaces. Acta Geophys Pol 52(2):219–235
- 10. Chirita S, Ghiba LD (2010) Inhomogeneous plane waves in elastic materials with voids. Wave Motion 47(6):333–342
- 11. Cowin SC (1985) The viscoelastic behavior of linear elastic materials with voids. J Elast 15(2):185–191
- 12. Cowin SC, Nunziato JW (1983) Linear elastic materials with voids. J Elast 13(2):125–147
- 13. Dey S, Gupta AK, Gupta S (2000) Torsional surface waves in nonhomogeneous anisotropic medium under initial stress. J Eng Mech 126(11):1120–1123
- 14. Dey S, Gupta S, Gupta AK (2004) Propagation of Love waves in an elastic layer with void pores. Sãdhãna 29(4):355–363
- 15. Dunkin JW, Eringen EC (1963) On the propagation of waves on electromagnetic elastic solids. Int J Eng Sci 1:461–495
- 16. Gubbins D (1990) Seismology and plate tectonics. Cambridge University Press, London
- 17. Ke LI, Wang YS, Zhang ZM (2006) Love waves in an inhomogeneous fluid saturated porous layered half-space with linearly varying properties. Soil Dyn Earthq Eng 26(6):574–581
- 18. Knopoff L (1955) The interaction between elastic wave motion and a magnetic field in electrical conductors. J Geophys Res 60:441–456
- 19. Kumar S, Pal PC (2014) Wave propagation in an inhomogeneous anisotropic generalized thermoelastic solid under the effect of gravity. Comput Therm Sci 6(3):241–250
- 20. Kumar S, Pal PC, Majhi S (2015) Reflection and transmission of plane SH-waves through an anisotropic magnetoelastic layer sandwiched between two semi-infinite inhomogeneous viscoelastic half-spaces. Pure Appl Geophys 172(2):2621–2634
- 21. Love AEH (1927) Mathematical theory of elasticity. Dover, New York
- 22. Magdalena I, Pudjaprasetya SR, Wiryanto LH (2014) Wave interaction with an emerged porous media. Adv Appl Math Mech 6(5):680–692
- 23. Manolis GD, Shaw RP (1996) Greens function for the vector wave equation in a mildly heterogeneous continuum. Wave Motion 24:59–83
- 24. Manolis GD, Rangelov TV, Shaw RP (2002) Conformal mapping methods for variable parameter elastodynamics. Wave Motion 36:185–202
- 25. Maugin GA (1998) Continuum mechanics of electromagnetic solids. Elsevier, Amsterdam
- 26. Nunziato J, Cowin SC (1979) A nonlinear theory of elastic materials with voids. Arch Ration Mech Anal 72(2):175–201
- 27. Pal PK, Acharya D (1998) Effects of inhomogeneity on surface waves in anisotropic media. Sãdhãna 23(3):247–258
- 28. Pal PC, Mandal D (2014) Generation of SH-type waves due to shearing stress discontinuity in a sandy layer overlying an isotropic and inhomogeneous elastic half-space. Acta Geophys 62(1):44–58
- 29. Qian Z, Jin F, Lu TJ (2008) Transverse surface waves in functionally graded piezoelectric materials with exponential variation. Smart Mater Struct 17:065005
- 30. Samal SK, Chattaraj R (2011) Surface wave propagation in fiber-reinforced anisotropic elastic layer between liquid saturated porous half space and uniform liquid layer. Acta Geophys 59(3):470–482
- 31. Singh AK, Das A, Lakshman A, Chattopadhyay A (2016a) Effect of corrugation and reinforcement on the dispersion of SH-wave propagation in corrugated poroelastic layer lying over a fibre-reinforced half-space. Acta Geophys 64(5):1340–1369
- 32. Singh AK, Mistri KC, Das A (2016b) Propagation of Love-type wave in a corrugated fibre-reinforced layer. J Mech 32(6):693–708
- 33. Wang YS, Zhang ZM (1998) Propagation of Love waves in a transversely isotropic fluid-saturated porous layered half-space. J Acoust Soc Am 103(2):695–701
- 34. Zakharenko AA (2005) Analytical studying the group velocity of three-partial Love (type) waves in both isotropic and anisotropic media. Nondestruct Test Eval 20(4):237–254
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-350a1020-1b60-4ccc-8855-efc0f4d3e8dd