PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bladder volume estimation based on USG images

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article explores deep learning models in urological diagnostics to measure urinary bladder volume from medical images. It addresses the shortcomings of traditional methods by introducing advanced imaging techniques for more objective and precise analysis. The research employs Convolutional Neural Networks (CNNs) and the MONAI platform for image segmentation and analysis, using data from The Cancer Imaging Archive to focus on urological regions. Findings suggest these models enhance diagnostic accuracy but also highlight the need for further modifications to tailor them to specific medical data, underscoring machine learning's significant role in accurate medical assessments for urology.
Twórcy
  • Lodz University of Technology
  • Lodz University of Technology
  • John Paul II University in Biala Podlaska
Bibliografia
  • [1] Bih, L., Ho, C., Tsai, S., Lai, Y. i Chow, W., “Bladder shape impact on the accuracy of ultrasonic estimation of bladder volume”, Archives of Physical Medicine and Rehabilitation, vol. 79, no.12, pp. 1553-1556, 1998. https://doi.org/10.1016/S0003-9993(98)90419-1
  • [2] Birch, N., Hurst, G., Doyle, P., “Serial Residual Volumes in Men with Prostatic Hypertrophy”, British Journal of Urology, vol. 62, no. 6, pp. 571-575, 1988. https://doi.org/10.1111/j.1464-410X.1988.tb04428.x
  • [3] Bolla, S., Odeluga, N., Amraei, R., „Histology, Bladder” in StatPearsl [Internet]. Treasure Island (FL): StatPearls Publishing, 2024 Jan. Availavle online: https://www.ncbi.nlm.nih.gov/books/NBK540963/
  • [4] Chan, H. “Noninvasive bladder volume measurement”. Journal of Neuroscience Nursing, vol. 25, no. 5, pp. 309-312, 1993. https://doi.org/10.1097/01376517-199310000-00007
  • [5] Christ, P.F., Elshaer, M.E.A., Ettlinger, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M., Armbruster, M., Hofmann, F., D'Anastasi, M., Sommer, W.H., Ahmadi, S.-A., Menze, B.H. “Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields”, Proceedings of the MICCAI, pp. 415-423, 2016. https://doi.org/10.48550/arXiv.1610.02177
  • [6] Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S. “Dermatologist-level classification of skin cancer with deep neural networks”, Nature, vol. 542, pp. 115-118, 2017. http://doi.org/10.1038/nature21056
  • [7] Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D.I., Wang, G., Eaton-Rosen, Z., Gray, R., Doel, T., Hu, Y., Whyntie, T., Nachev, P., Modat, M., Barratt, D.C., Ourselin, S., Cardoso, M.J., Vercauteren, T. “NiftyNet: A Deep-Learning Platform for Medical Imaging”, Computer Methods and Programs in Biomedicine, vol. 158, pp. 113-122, 2018. https://doi.org/10.1016/j.cmpb.2018.01.025
  • [8] Han, X. “Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method”, arXiv preprint arXiv:1704.07239, 2018. https://doi.org/10.48550/arXiv.1704.07239
  • [9] Hyunwoo, C., Ilseob, S., Jihun, J.,Yangmo, Y., “A Lightweight Deep Learning Network on a System-on-Chip for Wearable Ultrasound Bladder Volume Measurement Systems: Preliminary Study”, Bioengineering, vol. 10, no. 5, article number 525, 2023. https://doi.org/10.3390/bioengineering10050525
  • [10] Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B. “Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation”, Medical Image Analysis, vol. 36, pp. 61-78, 2017. https://doi.org/10.1016/j.media.2016.10.004
  • [11] Kumar, A., Kim, J., Lyndon, D., Fulham, M., Feng, D. “An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification”, IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 1, pp. 314-323., 2019. https://doi.org/10.1109/JBHI.2016.2635663
  • [12] Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A. “H-DenseUNet: Hybrid Densely Connected UNet for Liver and Liver Tumor Segmentation from CT Volumes”, IEEE Transactions on Medical Imaging, vol. 39, no. 6, pp. 1306-1317, 2020. https://doi.org/10.48550/arXiv.1709.07330
  • [13] Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A.W.M., van Ginneken, B., Sánchez, C.I. “A survey on deep learning in medical image analysis', Medical Image Analysis, vol. 42, pp. 60-88, 2017. https://doi.org/10.1016/j.media.2017.07.005
  • [14] Lukacz, E., Sampselle, C., Gray, M., Macdiarmid, S., Rosenberg, M., Ellsworth, P., Palmer, M., “A healthy bladder: a consensus statement”. International Journal of Clinical Practice, vol. 65, no. 10, pp. 1026-1036, 2011. https://doi.org/10.1111/j.1742-1241.2011.02763.x
  • [15] Memon, N., Mirza, A., Gilani, S., “ Segmentation of Lungs from CT Scan Images for Early Diagnosis of Lung Cancer”. World Academy of Science, Engineering and Technology. International Journal of Medical and Health Sciences, vol. 2, no. 2, pp. 297-302, 2008. Available online: https://api.semanticscholar.org/CorpusID:15484020
  • [16] Milletari, F., Navab, N., Ahmadi, S.-A., “V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation”, Fourth International Conference on 3D Vision (3DV), pp. 565-571. 2016. https://doi.org/10.1109/3DV.2016.79
  • [17] Müller, L., Tibyampansha, D., Mildenberger, P., Panholzer, T., Jungmann, F., Halfmann, M.C., “Convolutional neural network-based kidney volume estimation from low-dose unenhanced computed tomography scans”, BMC Medical Imaging, vol. 23, no. 1, article number 187, 2023. https://doi.org/10.1186/s12880-023-01142-y
  • [18] Mustra, M., Delac, K., Grgic., M., “Overview of the DICOM standard” in 2008 50th International Symposium ELMAR, Borik Zadar, Croatia: IEEE, pp. 39-44, 2008. Available online: https://ieeexplore.ieee.org/document/4747434
  • [19] Ronneberger, O., Fischer, P., Brox, T., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 Eds. Navab N., Hornegger J., Wells W., Frangi A. Cham; Springer, pp. 234-241, 2015. https://doi.org/10.1007/978-3-319-24574-4_28
  • [20] Rosenberger, R., Wojtek, P., Konopka, M., Pieniążek, P., Bogusz, I., Sąsiadek, M., „Kliniczne zastosowanie obrazowania perfuzyjnego metodą tomografii komputerowej oraz obrazowania dyfuzyjnego i perfuzyjnego metodą rezonansu magnetycznego w wykrywaniu wczesnych zmian w udarze niedokrwiennym mózgu”, Udar Mózgu. Problemy Interdyscyplinarne, tom 6, no 2, pp. 71-78, 2004. Available online: https://journals.viamedica.pl/um/article/view/33754/24796
  • [21] Setio, A.A.A., Traverso, A., de Bel, T., Berens, M.S.N., van den Bogaard, C., Cerello, P., Chen, H., Dou, Q., Fantacci, M.E., Geurts, B., van der Gugten, R., Heng, P.A., Jansen, B., de Kaste, M.M.J., Kotov, V., Lin, J.Y.-H., Manders, J.T.M.C., Sánchez, C.I., Schaap, M., Silva, C.A., Snoeren, M., Prokop, M., Smitsmans, M.H.P., Tang, H., Terraz, O., van Velden, F.H.P., Walsh, S., Zuidhof, G.C.A., van Ginneken, B., Jacobs, C., “Validation, Comparison, and Combination of Algorithms for Automatic Detection of Pulmonary Nodules in Computed Tomography Images: The LUNA16 Challenge”, Medical Image Analysis, vol. 42, pp. 1-13, 2017. https://doi.org/10.1016/j.media.2017.06.015
  • [22] Shen, D., Wu, G., Suk, H.-I. “Deep Learning in Medical Image Analysis”, Annual Review of Biomedical Engineering, vol. 19, pp. 221-248, 2017. https://doi.org/10.1007/978-3-030-33128-3_1
  • [23] Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken, B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., Ronneberger, O., Summers, R.M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M., Golia-Pernicka, J., Heckers, S.H., Jarnagin, W.R., McHugo, M.K., Napel, S., Vorontsov, E., Maier-Hein, L., Cardoso, M.J., “A large annotated medical image dataset for the development and evaluation of segmentation algorithms”, arXiv preprint, 2019. https://doi.org/10.48550/arXiv.1902.09063
  • [24] Wasserthal, J., Breit, H.-C., Meyer, M. T., Pradella, M., Hinck, D., Sauter, A. W., Segeroth, M., "TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images”, Radiology Artificial Intelligence, vol. 5, no. 5, article number 230024, 2023. https://doi.org/10.1148/ryai.230024
  • [25] Zhou, Z., Rahman Siddiquee, M., Tajbakhsh, N., Liang, J., “UNet++: A Nested U-Net Architecture for Medical Image Segmentation” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, vol. 11045, pp. 3-11, 2018. https://doi.opi/10.1007/978-3-030-00889-5_1
  • [26] Cancer Imaging Archive, https://public.cancerimagingarchive.net/, 2024.
  • [27] MicroDicom, https://www.microdicom.com/, 2024.
  • [28] 3D Slicer, https://www.slicer.org/, 2024.
  • [29] OsiriX Foundation, https://www.osirix-viewer.com/, 2024.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-350921e5-959d-4601-9fa5-790a3d719ce9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.