Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Surface coating technology, as the main technology to improve the fatigue life of mechanical systems, has been well applied in mechanical equipment. The present study aimed to explore low-cost surface coating preparation technology using inexpensive rice husk as the research object, and the pyrolysis process behavior of rice husk was analyzed. The Ni60/SiO2 coating was prepared on the surface of the 45# steel substrate using the pyrolysis product SiO2 fiber as the reinforcing phase and supersonic plasma-spraying equipment. The results showed no defects such as cracks, pores, and inclusions in the prepared coating. The nanohardness of the Ni60/SiO2 coating reached 6506 μN, and the average friction coefficient reached 0.42. In the friction-and-wear experiment, the Ni60/SiO2 coating was manifested as an abrasive wear mechanism.
Wydawca
Czasopismo
Rocznik
Tom
Strony
37--42
Opis fizyczny
Bibliogr. 16 poz., fot., rys., wykr., wzory
Twórcy
autor
- Henan Light Industry Vocational College, Zhengzhou, 450002, P.R. China
autor
- Henan Light Industry Vocational College, Zhengzhou, 450002, P.R. China
Bibliografia
- [1] Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities, Energ. Environ. Sci. 9 (3), 729-762 (2016). DOI: https://doi.org/10.1039/c5ee03109e
- [2] H.B. Feng, H. Hu, H.W. Dong, et al., Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors, J. Power. Sources. 302, 164-173 (2016). DOI: https://doi.org/10.1016/j.jpowsour.2015.10.063
- [3] X.S. Wang, Z.L. Lu, L. Jia, J.X. Chen, Physical properties and pyrolysis characteristics of rice husks in different atmosphere, Results. Phys. 6, 866-868 (2016). DOI: https://doi.org/10.1016/j.rinp.2016.09.011
- [4] B. Marques, J.A. Almeida, A.O. Tadeu, et al., Rice husk cement-based composites for acoustic barriers and thermal insulating layers, J. Build. Eng. 39, 102297-102313 (2021). DOI: https://doi.org/10.1016/j.jobe.2021.102297
- [5] A. Rashad, Cementitious materials and agricultural wastes as natural fine aggregate replacement in conventional mortar and concrete, J. Build. Eng. 5, 119-141(2016). DOI: https://doi.org/10.1016/j.jobe.2015.11.011
- [6] C. Baglivo, P.M. Congedo, High performance precast external walls for cold climate by a multi-criteria methodology, Energy. 115, 561-576(2016). DOI: https://doi.org/10.1016/j.energy.2016.09.018
- [7] Y. Chen, G.E. Okudan, D.R. Riley, Sustainable performance criteria for construction method selection in concrete buildings, Automat. Constr. 19, 235-244 (2010). DOI: https://doi.org/10.1016/j.autcon.2009.10.004
- [8] M. Asim, G.M. Uddin, H. Jamshaid, A. Raza, et al., Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials, J. Build. Eng. 31, 101411-101422 (2020). DOI: https://doi.org/10.1016/j.jobe.2020.101411
- [9] N.A. Liu, K.F. Huo, et al., Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, SCI. Rep-UK. 3, 1919-1926 (2013). DOI: https://doi.org/10.1038/srep01919
- [10] C.M.L. Adrian, Y. Suzana, L.F.C. Bridgid, et al., Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: Kinetics modelling and product gas analysis, J. Clean. Prod. 197, 1231-1243 (2018). DOI: https://doi.org/10.1016 /j.jclepro.2018.06.245.
- [11] B.L.F. Chin, S. Yusup, P. Kannan, C. Srinivasakannan, S.A. Sulaiman, Comparative studies on catalytic and non-catalytic cogasification of rubber seed shell and high density polyethylene mixtures, J. Clean. Prod. 70, 303-314 (2014). DOI: https://doi.org/10.1016/j.jclepro.2014.02.039.
- [12] I.Y. Mohammed, Y.A. Abakr, H. Xing, J.N. Alaba, et al., Recovery of clean energy precursors from Bambara groundnut waste via pyrolysis: kinetics, products distribution and optimisation using response surface methodology, J. Clean. Prod. 164, 1430-1445 (2017). DOI: https://doi.org/10.1016/j.jclepro. 2017.07.068.
- [13] Y. Shen, P. Zhao, Q. Shao, In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification, Appl. Catal. B-Environ. 152, 140-151 (2014). DOI: https://doi.org/10.1016/j.apcatb.2014.01.032
- [14] M.E. Boot-Handford, E. Virmond, N.H. Florin, R. Kandiyoti, P.S. Fennell, Simple pyrolysis experiments for the preliminary assessment of biomass feedstocks and low-cost tar cracking catalysts for downdraft gasification applications, Biomass Bioenerg 108, 398-414 (2018). DOI: https://doi.org/10.1016/j.biombioe.2017.10.048
- [15] X.S. Wang, Z.G. Xing, J.J. Hou, K. Liu, Composite ceramic-Ni60 coating fabricated via supersonic plasma spraying, Chinese. J. Phys. 61, 72-79 (2019). DOI: https://doi.org/10.1016/j.cjph.2019.08.012
- [16] X.S. Wang, Z.G. Xing, Preparation and properties of composite nanoceramic NiCrBSi-TiO2/WC(Co) coatings, Coatings. 10, 868-879 (2020). DOI: https://doi.org/10.3390/coatings10090868.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35015790-a464-4b1f-aac2-5ad29bcdd3a1