
JAISCR, 2011, Vol.1, No.1, pp. 27

A TWO-LAYER NEURAL SYSTEM FOR
REDUCED-REFERENCE VISUAL QUALITY ASSESSMENT

Judith Redi, Paolo Gastaldo, Rodolfo Zunino

Department Biophysical and Electronic Engineering
University of Genoa

Via Opera Pia 11/, 16145 Genoa, Italy

Abstract

Real-time assessment of visual quality can be efficiently supported by reduced-refe-rence

paradigms, which require a very limited amount of information on the original signal, eas-

ily embeddable in the signal itself. In this paper, a reduced-reference system for image

quality assessment is proposed, based on a small sized numerical description of images

encoding the luminance distribution and its variations due to visual distortions. The as-

sessment paradigm is implemented exploiting machine learning tools and articulates in

two phases: first, a Support Vector Machines-based classifier identifies the kind of distor-

tion affecting the image; then, the actual quality level of the distorted image is computed

by a specifically trained SVM regressor. The general validity of the approach is supported

by experimental validations based on subjective quality data.

1 Introduction

As the fruition of video and multimedia con-

tents becomes wider, exploiting new media tech-

nologies such as the internet, electronic imaging

systems are more than ever required to guarantee

the high quality of the displayed signal, regardless

to the distortions originated during the transmis-

sion and/or the displaying processes. Such a sce-

nario calls for the need of accurate, on-board signal

post-processing systems, able to detect the artifacts

brought about by distortions, to estimate the per-

ceived quality of the received images and to apply

enhancement algorithms, in order to appropriately

correct and enhance the finally displayed signal.

The study and modeling of visual quality percep-

tion covers then a crucial role in the development of

cutting-edge video technology applications.

Up to now, the most reliable tool for estimat-

ing perceived quality is subjective testing, directly

involving humans and their judgment [5, 31, 20,

1]. Real-time post-processing chains cannot rely

on such expensive and time-consuming techniques,

hence requiring automated (objective) quality as-

sessment systems (OQAs) [6, 21, 36]. OQAs rely

on the computation of objective metrics, which can

either exploit low to high level Human Visual Sys-

tem salient features, or relevant statistical descrip-

tions of the signal. Full-Reference (FR) paradigms

[33, 11, 37, 3, 7, 8] perform quality assessments by

computing features as a comparison of the origi-

nal with the distorted image, hence requiring full

access to both signals. Such techniques find sev-

eral applications (i.e. coding algorithms perfor-

mance tests) but cannot be exploited in real-time

contexts. Reduced Reference (RR) methods pro-

vide instead a good trade-off between blind (No

Reference, [39, 35, 19, 9, 18, 40, 16]) and FR qual-

ity assessment, only involving a limited amount of

numerical features characterizing the original sig-

nal [30, 34, 38, 17, 15, 23, 24]. This overcomes

a common drawback of No Reference algorithms,

namely their limited applicability to a single type

of distortion. Thus, the RR paradigm can provide a

successful approach for supporting real-time mod-

eling of perceived quality.

Several existing FR and RR algorithms [37, 3,

–41



28 J. Redi, P. Gastaldo and R. Zunino

34, 38] can be defined as “general-purpose” (as

opposed to distortion-specific), and offer the great

advantage of using a single feature-based descrip-

tion for assessing the quality losses due to different

kinds of distortions (e.g. noise, compression arti-

facts, reduced sharpness). Usually, this non-linear

mapping is computed distortion-dependent, adapt-

ing the general-purpose metric to the specific ef-

fects of one distortion on quality. Such a strategy is

proved to be successful; however, it requires some a

priori knowledge on the kind of distortion affecting

the signal, which is often considered as given. The

research proposed in this paper addresses such cen-

tral issue by introducing a two-layer OQA system

that can automatically identify the kind of distor-

tion affecting the signal, and then apply the most

effective objective metric in the quality assessment

phase.

The present work further investigates on as-

sessment models based on connectionist paradigms

[24]. A two-layer RR system based on Support Vec-

tor Machines (SVMs) [32] is designed to map a nu-

merical description of the image into quality scores.

To handle different distortions, first a classifier de-

termines the type of distortion affecting the image.

According to the output of the classifier, a regres-

sion machine is chosen among a bank of predic-

tors trained to evaluate the effects on the quality of

different distortions. This machine eventually per-

forms the non linear mapping required to quantify

the loss in quality of the image with respect to its

original version.

The proposed system is fed with a feature-based

representation of the distorted image and its orig-

inal version. Luminance distribution information

supports image representation, as artifacts brought

about by digital processing affect the original lu-

minance content of the image, each in a peculiar

way. Hence, the rationale of the present approach

is that by comparing the statistics of the original

and distorted image one can identify both the kind

and the extent of the distortion. Previous works

[23, 24] showed that second order statistics can ap-

ply successfully toward that end; therefore, this re-

search adopts a set of features derived from the co-

occurrence matrix [25].

In this paper, bandwidth and computational

constraints are also considered as parameters to

evaluate the effectiveness of the approach. Hence,

with respect to [24], a different strategy, involving

changes in the metric computation and in the sys-

tem setup, is used. Experimental validation is pro-

vided on the LIVE database [10], including three

types of distortion: White noise, Gaussian Blur and

JPEG compression. Empirical results confirm the

validity of the connectionist paradigm and the ef-

fectiveness of luminance statistics for predicting the

image quality. Furthermore, the changes applied to

[24] further prove the flexibility of the system and

the robustness of the overall approach.

2 System Overview

Reduced reference OQAs represent a promis-

ing solution for on-board, real time image quality

assessment in consumer multimedia systems. The

major advantage that such methods offer is the pos-

sibility of assessing quality by exploiting some in-

formation about the original image, provided that

such information is sufficiently small-sized with re-

spect to the video signal to be transmitted. As a ma-

jor consequence, that information can be included

in the signal as metadata without affecting the band-

width occupation. In this regard, RR approaches

improves over full-reference approaches, which are

actually unsuitable for most applications, as they re-

quire full access to the original signal.

This study proposes a Reduced Reference

OQA, based on a double-layer approach that allows

handling the effects of different distortions. The

first layer tackles the task of distortion identifica-

tion. The second layer is made of a set of dedi-

cated predictors, specifically trained to understand

the quality losses in the image due to the presence

of the detected distortion.

In this research, emphasis is indeed put on lim-

iting the computational cost of the objective met-

ric and the amount of information required to be

computed from the original signal and set along

the transmission channel. Three main factors al-

low to tackle this purpose effectively, namely : (1)

the suitability of luminance distribution derived fea-

tures to describe quality losses; (2) a feature se-

lection procedure designed to discard non informa-

tive features, which in turn would inflate the size of

the metadata vector to be transmitted; (3) the non-

linear modeling power of Machine Learning tools

(i.e. Support Vector Machines), which precisely
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Figure 1. Overview of the Reduced Reference General Purpose Objective Qulaity Assessment System.

mimic human visual perception without requiring

a detailed model of the HVS.

2.1 Outline of the Reduced-Reference
Quality Prediction Framework

Let I(n) be the reference image, and Ī(n,r) the im-

age resulting from the insertion of some distortion

toI(n), being r the distortion level. Let x(n) and x(n,r)

be the numerical representations of I(n) and Ī(n,r),
respectively. Finally, let q(n) and q(n,r) be the quality

levels for I(n) and Ī(n,r), respectively, determined via

subjective testing. The proposed system (see figure

1) compares the numerical descriptors, {x(n),x(n,r)},
and estimates the discrepancy,dS

(
q(n),q(n, r)

)
, be-

tween the subjective scores associated with the im-

ages. At runtime, vector x(n) is worked out at the

signal source, while x(n,r) is computed on the re-

ceiver side, and the two vectors are eventually pro-

cessed to obtain quality estimates.

Having defined the set A={a1, a2, . . . , al} of dis-

tortions of interest, the system relies on a dedicated

quality predictor for each of them. As no a-priori

knowledge can be assumed on the nature of the dis-

tortion affecting the input signal, a distortion detec-

tor is first needed to identify the distortion (ai∈A)

applied to the imageI(n). This first module forwards

the image descriptors to the appropriate quality pre-

dictor Ω(ai), which finally provides an estimation

for the difference in quality dS
(
q(n),q(n, r)

)
between

the reference and incoming signal, distorted by ai.

3 Objective Quality Metric

The color distribution across one image can be

consistently altered due to the distortion impact.

To describe such changes, second order histograms

[25, 13] are powerful tools, representing the joint

occurrence of a pair of colors throughout the im-

age. Hence, the present research exploits features

derived from the co-occurrence matrix to construct

an objective description of the image. To represent

the color, the luminance (Y) layer of the YCbCr

colorspace is chosen. The relevance of luminance

in quality assessment has been already extensively

proved [11]. Furthermore, video streams are usu-

ally encoded in the YCbCr colorspace, hence, in a

real time perspective, the luminance channel would

be immediately available for computation.

The luminance distribution-based objective

metric is computed in three steps: first locally, on

a block-by-block basis, then gathering the obtained

values into a single statistical global descriptor, to

reduce the number of relevant values to be pro-

cessed by the Machine Learning based assessment

system. Finally, a feature selection procedure is ap-

plied, to limit information redundancy in the global

descriptor.

3.1 Co-occurrence Matrices

The co-occurrence matrix measures local cor-

relation among gray tones within an image sub-

region. Defining a region a, including Ha × Wa
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Figure 2. Effects of distortions on the color distribution. The co-occurrence matrix is shown for the

original image (a), and the same image with Jpeg Compression (b), White Noise (c) and Gaussian Blur (d)

applied, respectively.

pixels, each matrix element C(a)
i, j (λ,θ) of the co-

occurrence matrix Ca describes a joint occurrence

of luminance levels, and counts the pairs of pix-

els in a that: (1) have gray levels i and j, and (2)

are separated by λ radial units at an angle q to

the horizontal axis. Formally, Ca is defined as:

with i, j = 0, . . . ,Ng (1)

where Dh and Dv are the horizontal and vertical dis-

placements in the q direction, respectively:

Δh = λ�cosθ� ,Δv = λ�sinθ� ,0◦< q≤ 90◦ (2)

Δh = λ�sinθ� ,Δv = λ�cosθ� ,90◦< q≤ 180◦
(3)

Ca is eventually a Ng × Ng matrix, where Ng is

the number of luminance quantization levels.

Figure 2 illustrates the Co-occurrence matrix

extracted from the original image Sailing 2 of LIVE

database and from three differently distorted ver-

sions of it. Axis X and Y are indexed by color bins,

while the Z axis indicates the joint occurrence of the

given pair of colors at a predefined distance 1 pixel

in the horizontal direction (i.e., l = 1 and q = 0). It is

easily noticeable how different distortions cause pe-

culiar changes to the second-order histogram when

compared with the original signal (figure 2(a)). For

example, JPEG compression (figure 2(b)) causes a

severe quantization of the histogram, while white

noise (figure 2(c)) spreads the informative content

across the whole matrix. Such a marked behav-

ior suggests the possibility that a metric based on

the analysis of the co-occurrence matrix variations

could efficiently reveal both the distortion affecting

the image and its amount.
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3.2 Local Metric Computation

Luminance distribution information is collected

locally, on adjacent non-overlapping subregions

of the image sized NaxNa pixels. For each re-

gion, a Co-occurrence matrix is computed, and,

from it, local features values.Indeed, for optimiza-

tion purposes, co-occurrence matrices can also be

characterized by using a set of scalar descriptors

(features), statistically-based and image-description

oriented [33]. All features are implicitly indexed by

the image region, a, from which the matrix is calcu-

lated. To minimize computational cost the present

research adopts a subset, Φ=
{

fu;u = 1, ..,Nf
}

, of

N f =10 features that have already been tested to be

successful [23, 22].

The block size, Na, plays a crucial role in the re-

liability of the image description, and the image size

should be taken into account to ensure proper sam-

pling by a sufficient number of measures. More-

over, the features derived from the co-occurrence

matrix C(a)(λ,θ) may suffer from border effects.

The percentage of pixels that do not enter the com-

putation of C(a)
i, j (λ,θ) decreases as Na increases,

hence one should avoid to use small block sizes; a

typical setting is Na>8.

3.3 Distortion Distribution Representation
at a Global Level

The second step compresses the information ob-

tained, and aggregates block-level data into one ob-

jective vector that characterizes the whole image.

This procedure is performed consistently with the

actual measuring procedure, since human assessors

usually generate one overall quality score per im-

age. Also, for computational and limited bandwidth

reasons, block-based information must be reduced

into a single, small-sized vector per image. To ac-

complish this, a percentile-based description of the

distribution of each co-occurrence matrix feature is

taken. As each feature reports on the effects of dis-

tortions on color distribution, the percentile based

global vector can be considered an expression of the

distortion action across the image.

For a parameter setting (l*,q*), the image Ī(n,r)

is represented by a set of N f objective vectors,

x(n, r)
u,(λ∗,θ∗), u=1,..,N f , which contain detail-related in-

formation. In the remainder of this paper, the index

pairs (n,r) and (l*,q*) will be omitted wherever pos-

sible, in order to simplify the notation. The proce-

dure to construct the objective vectors can be sum-

marized as follows:

Inputs: a picture Ī(n,r), a descriptive
feature fu and a the set of values
Xu =

{
xu,m; m = 1, ..,Nb

}
, computed for each

block m of the N b blocks in the image.

– Compute a percentile-based
description of the sample set Xu;
let pa be the a-th percentile:

ϕα,u = pα (Xu)

– Assemble the objective
descriptor vector, xu, for the
feature fu on the image Ī(n,r) as

xu = {ϕα,u;α= 0,20,40,60,80,100} (4)

3.4 Feature Selection

The paper considers the statistical approaches

to feature selection proposed in [22], which exploits

Kolmogorov-Smirnov’s test.

The proposed method tackles feature se-

lection empirically; thus, the data set is ob-

tained by applying the image-processing algo-

rithm, ζq(·), at different settings to a library of

training images, Ω = {I(s), s=1,. . . ,np} and col-

lecting the sample of processed images, Ω̄ ={
Ī(s,q);s = 1, ..,np;q = q1, ..,qn

}
. Applying the

feature-extraction process (as per Sect. 3.2) to each

element in Ω̄, gives the eventual sample set V,

which holds ns=qnnp elements and is given by:

V =
{

x(s,q);s = 1, ..,np;q = q1, ..,qn

}
. (5)

The analysis selects from the complete set of can-

didate features, Φ, only the ‘active’ ones, i.e.,

those whose statistical properties depart signifi-

cantly from their original values after applying a

processing algorithm, ζq(·). Thus, for each objec-

tive feature f k∈ Φ, the analysis compares statisti-

cally two samples: one contains the values of fk for

a set of original images, the other holds the values

of fk for a set of processed images. To guarantee the

independence of the two samples, the two sets of

pictures are disjoint. The feature values are worked

out on non-overlapping blocks of pixels randomly

extracted from each image.
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Table 1. Co-occurrence Matrix Descriptive Features

Feature
name

Definition Feature name Definition

Absolute

value

f1 = ∑z zPz(λ,θ) Inverse Differ-

ence

f2 = ∑i, j
Ca(i, j,λ,θ)
1+(i− j)2

Correlation f3 =
[
∑i, j i jCa(i, j,λ,θ)−μ2

i
]/
σ2

i Autocorrelation f4 = ∑i, j i jCa(i, j,λ,θ)

Energy f5 = ∑i,i [Ca(i, j,λ,θ)]2 Diagonal En-

ergy

f6 = ∑
i= j
i, j [Ca(i, j,λ,θ)]2

Entropy f7 =−∑i, j Ca(i, j,λ,θ) log2Ca(i, j,λ,θ) Differential

Variance

f8 =
[
∑z(z− f1)

2Pz(λ,θ)
]1/2

Contrast f9 = ∑z z2Pz(λ,θ) Differential En-

tropy

f10 =−∑z Pz(λ,θ) log2 Pz(λ,θ)

IMC f11 =

(
∑i, j Ca(i, j,λ,θ) logCa(i, j,λ,θ)−∑i, j Ca(i, j,λ,θ) log

[
∑ j C

(a)
i

]2
)/

C(a)
i

With C(a)
i = ∑ j Ca(i, j,λ,θ), μI and σI mean and standard deviation o f C(a)

i , respectively, and
Pz(λ,θ) = ∑i, j,|i− j|=zCa(i, j,λ,θ)

The mutual independence of the data sets al-

lows one to use the Kolmogorov-Smirnov test [12]

to disprove the null hypothesis, that is, to determine

whether the two data sets for fk have not been drawn

from the same distribution. In that case, fk is se-

lected as an ‘active’ feature. KS has been preferred

over parametric tests because one usually cannot as-

sume a known distribution of the data involved.

The full pseudo-code of the feature selection al-

gorithm is outlined in [22].

4 Connectionist Paradigms for Ob-
jective Quality Assessment

The system described in section 2 consists of

two steps. Firstly, the distortion affecting the image

has to be identified; secondly, the numerical repre-

sentation of the image has to be mapped into a qual-

ity score by a dedicated predictor, which is specifi-

cally trained to assess image quality for a given dis-

tortion. The first layer is required to solve a clas-

sification problem. When aiming to detect the dis-

tortion ai affecting the sample I(n), the set A={a1,

a2, . . . , al}, the system is required to relate the in-

put vector xuto a discrete value, representing ai. On

the other hand, the second layer maps the numerical

descriptor xu into a quality score, which cannot be

expressed by discrete values to achieve acceptable

accuracy. Therefore, this module can be designed

to solve a regression problem.

In both cases, the use of connectionist

paradigms is appealing. The machine learn-

ing world provides excellent tools able to handle

both classification and regression supervised prob-

lems. Moreover, from a modeling point of view,

such methods appear particularly suitable to model

a highly non-linear context such as perception.

Among others, Support Vector Machines (SVM)

proved to be effective both for classification and re-

gression tasks.

In a most general setting, one has a data sam-

ple, X, holding n patterns: each pattern includes a

data vector, x∈Rm, and its associate ‘target’ label,

y. Classification problems involve a binary setting

y∈{-1,+1}, whereas a regression problem is tack-

led when target values are expressed by continu-

ous values, e.g., y∈[-1,1]. The learning phase uses
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both x and y to build up a decision rule; at run-time,

the trained machine processes unseen data and as-

sociates every input with a prediction of its target,ŷ.

The regression strategy implements the deci-

sion function, ŷ= f (x) as a weighted series, whose

basic terms, f (x), typically embed nonlinear func-

tions:

ŷ = f (x) =∑
i
βiφi(x)+β0 (6)

Classification machines just yield a binary out-

put by applying the operator sign(.) to f (x).

In the practical design of any estimator, the

training set TG = {(xi,yi); i=1,..,np} gives a sample-

based formulation of the desired input-output map-

ping. For any empirical paradigm, the training pro-

cedure implements that mapping by fitting the de-

grees of freedom of the supported nonlinear esti-

mator as per (6).

SVMs, in particular, tackle the pattern recog-

nition problem within the Statistical Learning The-

ory [32] framework. A crucial element of it is

the so-called kernel trick [29]: the kernel func-

tion K(·, ·) allows inner products of patterns in a

higher dimensional, transformed space, though not

involving the specific mapping of each single pat-

tern. Given the points φ(x1) and φ(x2) in the fea-

ture space that are associated with x1 and x2, re-

spectively, then their dot product can be written as

〈φ(x1) ,φ(x2)〉= K (x1,x2).

4.1 Support Vector Machines for Classifi-
cation

In the case of binary classification problems,

SVM relies on the solution of the following

Quadratic Programming problem to set the free pa-

rameters in (6):

min
α

{
1

2

np

∑
l,m=1

αlαmylymK(xl,xm)−
np

∑
l=1

αl

}

sub ject to :

{
0≤ αl ≤C,∀l
∑np

l=1 ylαl = 0
(7)

In (7), αl are the SVM parameters setting the

class-separating surface and C is a fixed regulariza-

tion term that rules the trade-off between accuracy

and complexity.

Problem setting (7) has the crucial advantage

of involving a quadratic-optimization problem with

linear constraints, ensuring that the solution is

unique. Actually, the specific choice for the kernel

parameters {C, σ} has an impact on the eventual

generalization performance of the SVM. Both the-

oretical [32] and empirical [2] approaches can be

adopted to determine the generalization limits. The

present research follows an empirical approach in-

volving k-fold cross validation [2].

4.2 Support Vector Machines for Regres-
sion

A SVM is used in the proposed system also

to map feature-based image descriptions into scalar

values that represent the perceived image quality.

As such, the objective quality assessment model can

be regarded as a regression problem, in which learn-

ing evolves according to an empirical sample.

In the present application, the vector, x, con-

tains a feature-based description of an image, while

the value yi represents the (normalized) quality

score associate with that image. SVMs regression

models approximate the target function for an input

vector, x, as

γ̂SV M (x) =
nSV

∑
i=1

(αi−α∗i )yiK (x̃i,x)+b (8)

where ai, a∗i are positive parameters and b is a bias.

The patterns {(x̃i,yi) , i = 1, ...,nSV} used are a sub-

set of the training set and are called ‘support vec-

tors’. Expression (8) shows that γ̂SV M (x) is a se-

ries expansion having the kernel function K(·, ·) as

a basis and involving part or all of the training pat-

terns. Inner products can still be handled in the

transformed space independently of the mapping of

the original patterns; therefore, the use of the kernel

trick also remains valid in regression problems.

The coefficients αi, α∗i and b in expression (8)

must be adjusted in compliance with the input sam-

ple distribution so as to minimize some cost func-

tion measuring the deviation resulting from the ap-

proximation. To this end, Vapnik [32] suggested

the use of ε-insensitive loss functions, which penal-

ize the error whenever the absolute approximation

error remains smaller than ε.
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Figure 3. First Layer scheme. A first SVM detects Noisy images, while the second discerns between

compressed and blurred ones.

5 Practical Implementation

In this section, a possible implementation of the

double-layer system is proposed. A SVM-based

classifier provides the distortion identification prob-

lem, while a SVM-based architecture maps feature-

based description of images into quality scores.

As compared with [24], the present paper pro-

poses a RR system that saves bandwidth and im-

proves the computational cost of the assessment

tool. Such goals are achieved 1) by exploiting the

co-occurrence matrix for the feature-based repre-

sentation of the image and 2) by developing an ef-

fective objective metric based only on two features.

5.1 Objective Metric Settings and Feature
Selection

The following settings are applied to the met-

ric described in section 3 to compute the objec-

tive descriptors x(n)u andx(n, r)
u , corresponding to the

reference image I(n) and the target image Ī(n,r)

respectively. The input image is divided into

square sub-regions of 32x32 pixels and the co-

occurrence matrix is computed on the luminance

component (Y-layer) of the blocks, with settings

λ=1 (neighboring pixels) and θ = 0 (horizontal

direction). The set of features Φ defined in ta-

ble (1) is then extracted for each block. Fi-

nally, the global descriptor is assembled by com-

puting 6 percentiles of the distribution of each fea-

ture fu, and combining them in the vector x(n,r)u ={
ϕ(n,r)α,u ;α= 0,20,40,60,80,100;u = 0,1, ...,11

}
.

The feature selection procedure presented in

section 3.3 is applied to Φ to select the two most

significant features to be elaborated by the SVMs in

layers I and II, independently on the specific prob-

lem to be treated. This choice is made in order not

to inflate the bandwidth required by the RR model.

In practice, the procedure described in 3.3 is applied

to each of the learning tasks the system is supposed

to tackle: distortion identification, quality mapping

for Noise, Blur and JPEG. The features fk result-

ing as active in the majority of the tasks are finally

selected as the most effective for the whole system

performance.

Eventually, the features Entropy and IMC (see

table I) are selected. For each feature, the input of

the SVM-based quality assessment system is ob-

tained simply by combining the descriptors of the

original and the distorted image:

z(n, r)
u =

[
x(n)u ,x(n, r)

u

]
(9)

As a result, the system processes 24 values in total,

of which only twelve are required to be sent through

the transmission channel together with the signal.

5.2 SVM-Based Quality Loss/Gain Quan-
tification

The Support Vector machine technology is ex-

ploited for the prediction system implementation.

In the first stage, the system is required to recognize

which distortion is affecting the image under test.

Hence, the role of the distortion identifier module

is to solve a multiclass problem, associating each

zu (as per eq. 8) to distortion ai∈A. We propose

to implement a multiclass machine by connecting

binary predictors in series, adopting a one-vs.-all

strategy. The first SVM is trained to identify im-

ages distorted by a1, and forward them to the a1

distortion quantifier in layer II. The second SVM

module recognizes images affected by a2, and so

on. Eventually, layer I will be made of l-1 SVMs,

given l distortions of interest. In the present imple-

mentation, distortion caused by White Noise, Gaus-

sian Blur and Jpeg Compression were considered (l
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= 3). Layer I is implemented as in figure 3, includ-

ing a first SVM handling noisy images and a second

one dividing blurred from compressed samples. To

privilege the system simplicity, a single feature is

elaborated by layer I. The outcome of the feature

selection is restricted to the better performing fea-

ture among the two classification tasks, resulting in

feature Entropy.

The layer delegated for objective quality pre-

diction (layer II) instead replicates as many inde-

pendent predictors as the number of considered dis-

tortion (figure 4). Following an approach already

experimented in [23], each module (also trained in-

dependently) is made of several SVM regressors,

each fed by a different feature. These estimators

are further integrated within an ensemble structure

[14, 27]. Based on previous research [23, 24, 27]

a simple output averaging strategy is chosen, being

the most effective method for integrating the pre-

dictions of all estimators:

d̂S

(
q(n),q(n,r)

)
=

1

U ∑u
d̂S

(
q(n),q(n,r)

)∣∣∣
f= fu

(10)

For the ensemble strategy to be successful, a ba-

sic requirement is to build independent estimators,

based on the receptive fields theory [26]: the in-

put space is divided into several, lower-dimensional

subspaces, and a predictor is dedicated to each sub-

space.

Applying the coordinate-partitioning principle

to the quality assessment domain leads to the spe-

cialization of each predictor on a single feature

of the considered set. This setting not only vali-

dates the hypothesis of disjoint subspaces required

for ensembles effectiveness, but also decreases the

dimensionality of the input space, enhancing the

SVM generalization ability.

Layer II involves therefore in its final configu-

ration l quality prediction modules made each of U
single SVMs gathered in an ensemble, being U the

number of features selected for the task. In this re-

search, layer II is made of three quality prediction

modules (one for quantifying the effects of White

noise, one for Gaussian Blur and one for JPEG com-

pression), each including two SVMs fed by zEntropy

and zIMC (thus, U = 2), respectively, consistently

with the feature selection procedure output.

5.3 Comparison with a Previous Imple-
mentation

The study presented in this paper represents an

extension and improvement of a previously pro-

posed work [24]. The previous implementation of

the system (from now on 2LQAold , as opposed to

the one here presented, indicated with 2LQAnew)

will be taken as term of comparison for the experi-

mental validation. Nonetheless, the proposed setup

already presents some peculiar advantages with re-

spect to 2LQAold , of which a short description will

be given in the following.

2LQAold was characterized by an objective

metric based on the color-correlogram [13] fea-

tures. The color-correlogram is a second-order his-

togram which still measures the joint occurrence of

colors at a given offset, but instead of considering

only the co-occurrences along direction θ, involves

in the computation color pairs in every possible di-

rection, according to a predefined norm. By adopt-

ing the co-occurrence matrix, a very reliable dis-

tortion description is still available (see figure 2);

nonetheless, one can lower the overall computa-

tional cost of the feature-extraction procedure, since

at least 50% of the pixel pairs are excluded from

the computation (when comparing with a correlo-

gram computed with offset=1 and norm L1, being

the less computationally heavy configuration).

The second relevant difference can be found in

the feature selection procedure, which was previ-

ously performed empirically. For 2LQAold color-

correlogram features were selected in order to max-

imize the generalization ability of each of the

distortion-dedicated quality assessors in layer II.

That choice led to the use of 4 features, correspond-

ing to a 48-dimensional input vector for the system

and to a double transmission overhead for the orig-

inal image description.

Finally, while the implementation of the clas-

sification layer holds, the second layer of 2LQAold
is based on CBP neural networks [28] ensembles.

The effectiveness of this choice will have to be con-

firmed evaluating experimental results.

6 Experimental Validation

The second release of the LIVE database [11]

was used as a testbed for the performance evalu-
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Figure 4. Layer II implementation. Three different modules are built to be specialized on the effect of one

of the considered distortions. Each module includes an ensemble of 2 SVMs, each trained on a different

descriptive feature.

ation of the proposed model, being a recognized

benchmark in the image quality assessment field.

LIVE database is based on 29 original images (from

now on “image contents”). Each of this content is

altered with different levels of five tipologies of dis-

tortions, originating then five subsets including both

the original images and their impaired versions. For

each of the 729 images in the dataset, a subjective

score is provided, originated from panel sessions di-

rectly involving humans. Subjective scores, namely

DMOSs, Differential Mean Opininon Scores, ex-

press the difference in quality between each im-

paired picture and its undistorted equivalent. Such

values are the targets for layer II. For layer I, man-

ual annotation of the distortion affecting the sam-

ples was sufficient, being independent from subjec-

tive evaluation.

The three datasets including images impaired

with White noise, Gaussian Blur and JPEG com-

pression were considered for validation.

To ensure robustness and avoid image content-

related learning effects, a k-fold-like testing strat-

egy was adopted. Five groups of images were cre-

ated, each containing all the distorted versions of

disjoint subsets of image contents. Both layers were

then tested performing 5 runs, in each of which al-

ternatively 4 of the 5 folds were used as training

data and the remaining one was used as test data. In

this way, the machines were tested on image con-

tents never processed during the training.

Experimental results are presented as follows.

First, details concerning the set up of the layer I are

presented. Then, the development of the distortion-

oriented assessment modules is discussed. Finally,

the performance of the eventual quality assessment

system combining the two layers is compared with

other approaches proposed in the literature.

6.1 Precision in Distortion Identification

The two SVMs of the first layer were trained in-

dependently. The k-fold cross-validation technique

was applied to tune the kernel parameters. For the

first task, noisy images recognition, the SVM was

trained on a dataset resulting from the merge of the

three LIVE sets. A linear kernel handled the prob-

lem successfully, as shown in table II. The parame-

ter C was finally set to 2.8*102. The second SVM

was trained on a subset of the previous dataset, in-

cluding only blurred and compressed images. A

normalized second order polynomial kernel as for-

mulated in [4] was preferred for this task. Based on

the cross-validation output, the parameter C was set

to 1.3105.

Table II reports the classification errors for each

run and for both SVM classifiers. While the per-

formance of the first classifier is almost perfect,

the second SVM lacks in precision, due to the in-

trinsically more complex problem. The perceptual

overlap between compression and blurring artifacts

(JPEG compression causes also blur) is reflected

also in the model: in this case a non-linear ker-

nel was necessary, and the setting of the parame-

ter C indicates increased complexity. Nonetheless,

on average the percentage of misclassified images
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is less than 6.5%, gaining more than 1% in accu-

racy with respect to the 2LQAold system. This re-

sult validates, at least for layer I, the choice of a

co-occurrence matrix-based metric and of the fea-

ture selection output. Also, the use of a polynomial

kernel seems to be more appropriate for the second

task tackling.

6.2 Accuracy in Quality Loss Prediction

The three ensembles of SVMs implementing

the second layer were each trained on a differ-

ent dataset. The datasets for White Noise and

Blurred images contained 145 patterns; the remain-

ing testbed included 159 JPEG compressed im-

ages. DMOSs, originally ranging between [0,100]

were remapped for computational reasons into the

range [-1, +1]. The six SVMs were all equipped

with a RBF kernel; thanks to the intrinsic flexi-

bility of the system it was possible to select op-

timum models independently for every predictor.

The final settings for the Noise predictor were{
CNoise

Entropy = 100, σNoise
Entropy = 2} for the Entropy

based SVM and
{

CNoise
IMC = 100, σNoise

IMC = 1}
for the IMC-based SVM. Following the previ-

ous notation, the setting used for the Blur pre-

dictor were
{

CBlur
Entropy = 10, σNoise

Entropy = 1} ,{
CBLur

IMC = 10, σBlur
IMC = 0.5} ; and for the JPEG

Compression predictor
{

CJPEG
Entropy = 10, σJPEG

Entropy = 1} ,{
CJPEG

IMC = 100, σJPEG
IMC = 0.5} .

To evaluate the second layer performance, we

report several parameters which measure the dis-

crepancy between the estimated change in quality,

d̂S
(
q(n),q(n, r)

)
, and the actual variation provided by

the LIVE database, dS
(
q(n),q(n, r)

)
. Four quantities

are considered:

– The Pearson’s Correlation Coefficient, ρ;

– The Spearman’s Rank Order Correlation Co-

efficient, SROCC;

– The mean percentage prediction error,

%μ|err|, where μ|err| is the value of the ab-

solute prediction error between ds and d̂S.

– The Root Mean Square prediction Error,

RMSE, between ds and d̂S.

The first two indicators are recommended by

the VQEG committee for objective metric perfor-

mance evaluation, being a measure of prediction

monotonicity, i.e. of the consistency between the

rank ordering of the samples given by the OQA and

that provided by humans in subjective tests. Com-

plimentary, μ|err| and RMSE are given as measures

of the prediction accuracy. Tables 3 to 5 show the

output of the second layer of the proposed system

compared to the performance of 2LQAold .

In general, the system achieves considerably

high accuracy, particularly when dealing with arti-

facts caused by Gaussian Noise, for which the per-

centage prediction absolute error is lower than 6%

and the Correlation of the assessments with the sub-

jective scores is 0.96. Dealing with compressed im-

ages, the RMSE is lower than 0.18 on a two points

scale, which is acceptable for real-world applica-

tions. Finally, as for 2LQAold , some lack in preci-

sion is presented by the Blur Predictor.

With respect to 2LQAold , the proposed system

gains in prediction monotonicity, for both Blur and

Compression effects prediction, while a slight de-

crease in accuracy occurs for the three quality as-

sessors. The differences in the systems setup should

be taken in account: although the proposed system

consistently simplifies the metric computation and

the system requirements, it still allows obtaining an

increase in correlation of the predicted scores, just

slightly loosing in accuracy.

6.3 Comparison with Other Approaches

As a further validation of the system, table 6

and 7 compare the proposed approach with several

well known OQAs. General Purpose RR OQAs are

actually very few [34, 15], hence further compari-

son is provided with the two well-known FR met-

rics MSSIM and PSNR. The proposed system com-

pares satisfactorily with the metric proposed by Li

and Wang (yet not including distortion identifica-

tion), and outperforms the method proposed in [34]

for all distortion types except for Gaussian Blur Pre-

diction, already recognized as a weak point of the

model. In the comparison with MSSIM and PSNR,

two details should be taken into account, namely (1)

the difference in the original image availability for

the computation of FR and RR metrics and (2) the

fact the quantities reported were computed after a

non-linear regression of all patterns for each dataset

and the generalization ability of the obtained mod-

els was tested only using images that had been used
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Table 2. Performance of each SVM machine for distortion identification in terms of % of misclassified

patterns

Proposed system 2LQAold [27]
Noise vs. All Blur vs. JPEG Noise vs. All Blur vs. JPEG

Run #1 0.00% 1.49% 0.00% 1.49%

Run #2 1.04% 3.18% 1.07% 1.58%

Run #3 0.00% 3.22% 1.09% 4.84%

Run #4 0.00% 14.51% 0.00% 19.35%

Run #5 0.00% 10.00% 0.00% 12.76%

Average 0.26% 6.48% 0.26% 7.56%
Kernel Linear Polynom. RBF RBF

C 2.8∗102 1.3∗105 104 105

Table 3. Performance of the quality estimator for noisy images in terms of correlation (Pearson and

Spearman Coefficients and errors (absolute and RMSE) between predicted and subjective quality scores.

Proposed system 2LQAold [27]
ρ SROCC μ|err|% rmse ρ SROCC μ|err|% rmse

Run #1 0.954 0.921 6.376 0.143 0.981 0.971 3.119 0.082

Run #2 0.942 0.951 5.864 0.149 0.937 0.944 5.216 0.163

Run #3 0.979 0.969 4.591 0.115 0.989 0.984 2.677 0.070

Run #4 0.954 0.956 5.777 0.142 0.985 0.982 3.122 0.079

Run #5 0.965 0.963 4.439 0.116 0.976 0.964 4.656 0.110

Average 0.959 0.952 5.409 0.133 0.974 0.969 3.758 0.101

Table 4. Performance of the quality estimator for blurred images in terms of correlation (Pearson and

Spearman Coefficients and errors (absolute and RMSE) between predicted and subjective quality scores.

Proposed system 2LQAold [27]
ρ SROCC μ|err|% rmse ρ SROCC μ|err|% rmse

Run #1 0.933 0.897 7.867 0.189 0.946 0.946 5.365 0.136

Run #2 0.915 0.894 7.724 0.183 0.668 0.643 12.328 0.334

Run #3 0.839 0.842 8.653 0.213 0.966 0.972 3.758 0.100

Run #4 0.936 0.933 7.139 0.169 0.914 0.912 6.469 0.154

Run #5 0.812 0.834 14.270 0.392 0.892 0.868 10.244 0.240

Average 0.887 0.880 9.130 0.229 0.877 0.868 7.633 0.193
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Table 5. Performance of the quality estimator for JPEG Compressed images in terms of correlation

(Pearson and Spearman Coefficients) and errors (absolute and RMSE) between predicted and subjective

quality scores.

Proposed system 2LQAold [27]
ρ SROCC μ|err|% rmse ρ SROCC μ|err|% rmse

Run #1 0.914 0.902 7.078 0.181 0.944 0.922 5.367 0.138

Run #2 0.886 0.872 7.522 0.190 0.857 0.864 7.186 0.207

Run #3 0.944 0.894 6.217 0.165 0.920 0.860 7.094 0.179

Run #4 0.934 0.923 6.287 0.151 0.939 0.912 4.579 0.121

Run #5 0.910 0.908 7.992 0.207 0.882 0.868 8.712 0.225

Average 0.917 0.900 7.019 0.179 0.908 0.885 6.588 0.174

in the training process.

7 Conclusions

A Reduced-reference, double layer system for

objective image quality assessment is proposed.

This general purpose system is designed to first rec-

ognize which distortion is affecting the image, and

then to quantify the quality loss caused by the pres-

ence of such distortion. Both layers are supported

by Support Vector Machines, trained in the first case

to correctly classify images according to the distor-

tion affecting them, and in the second case to un-

derstand the mapping between a numerical repre-

sentation of the image and the quality impairment

brought about by the applied distortion. The nu-

merical description of the image (Objective Metric)

is designed to minimize both the computational cost

and the transmission bandwidth requirements.

The proposed implementation of the system al-

lows consistent savings in computational time and

bandwidth. With respect to the system presented

in [24], a co-occurrence matrix is used in place

of the most expensive Color Correlogram, reduc-

ing the computational time up to 50%. The stricter

feature selection, applied offline, selects only two

values to be computed from the original and dis-

torted signals, compared to the four required before.

This brings a twofold benefit. Firstly, it decreases

the computational effort necessary for the numeri-

cal description of the images. Secondly, it allows

characterizing one image with 24 values, i.e., with

96 bytes, on common 32-bits architectures. As a

consequence, on the sender side, only two quanti-

ties have to be computed, and an overhead rrin f o <
0.05 KB is sent throughout the channel as metadata.

This is of the major importance for emerging mul-

timedia technologies, such as video streaming on

mobile phones, for which not always large band-

width availability can be assumed.

The performance of the system is not compro-

mised with respect to its less efficient version [24],

also well comparing with the state of the art of avail-

able Reduced-Reference quality assessment met-

rics.

A possible limitation of the proposed system is

the current inability of handling the combined effect

of different distortions. A heavily blurred image

presenting traces of noise would be at present pro-

cessed as if no noise was applied. However, differ-

ent artifacts contribute in a different way to the final

quality evaluation; therefore, all of them should be

taken into account. Focusing on predicting the an-

noyance of different types of visual artifacts, would

be greatly beneficial, allowing the abstraction of

their perceptual impact from the actual distortion

producing them. Further effort should then be put

in understanding how to combine the impact of dif-

ferent distortions in estimating the overall quality

of the picture. Needless to say, intensive subjective

studies are required to make this development con-

crete.
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