PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of flame spraying coatings reinforced with particles of carbon nanotubes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of the preliminary research of tribological properties of flame sprayed nickel and aluminum coatings reinforced with carbon nanotubes made on the structural steel S235J0 substrate. The carbon material – carbon nanotubes Nanocyl NC 7000 (0.5 wt.% and 1 wt.%) was used for structural reinforcement. The properties evaluation was made by the use of optical microscopy, scanning electron microscopy, Raman spectroscopy, microhardness measurements, and by means of abrasion and erosion resistance laboratory tests. The obtained results were compared with pure nickel powder coatings 2N5 (Ni 99.5%) and with pure aluminum powder coatings (EN AW 1000 series). It was proved that the flame spraying of nickel and aluminum coatings reinforced with particles carbonaceous material can be an effective alternative for other more advanced surfacing technology. The preliminary test results will be successively extended by further experiments to contribute in the near future to develop innovative technologies, that can be implemented in the aviation industry and the automotive. The presented research is a continuation of the work previously published.
Rocznik
Strony
57--76
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Welding Engineering, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Dipartimento di Ingegneria dell’Innovazione, Universitàdel Salento, Via per Monteroni, Lecce 73100, Italy
Bibliografia
  • 1. Lisiecki, A., (2016). Comparison of Titanium Metal Matrix Composite surface layers produced during laser gas nitriding of Ti6Al4V alloy by different types of lasers. Arch. Metall. Mater., 61, 1777–1783.
  • 2. Rogalski, G., Świerczyńska, A., Landowski, M., Fydrych, D., (2020). Mechanical and microstructural characterization of TIG welded dissimilar joints between 304L austenitic stainless steel and Incoloy 800HT nickel alloy. Metals, 10(5), 559.
  • 3. Sajek, A. (2020). Welding thermal cycles of joints made of S1100QL steel by SAW and hybrid plasma-MAG processes. Adv. Mater. Sci., 20(4), 75-86.
  • 4. Cacko, R., Chmielewski, T., Hudycz, M., Golański, D. (2020). New approach of friction AlN ceramics metallization with the initial FEM verification. Arch. Civ. Mech. Eng., 20(3), 1-11.
  • 5. Pańcikiewicz, K., Świerczyńska, A., Hućko, P., Tumidajewicz, M. (2020). Laser dissimilar welding of AISI 430F and AISI 304 stainless steels. Materials, 13(20), 4540.
  • 6. Szala, M., Łatka, L., Walczak, M., Winnicki, M., (2020). Comparative study on the cavitation erosion and sliding wear of cold-sprayed Al/Al2O3 and Cu/Al2O3 coatings, and stainless steel, aluminium alloy, copper and brass. Metals, 10(7), 856.
  • 7. Sundaramoorthy, R., Tong, S.X, Parekh, D., Subramanian, C., (2017). Effect of matrix chemistry and WC types on the performance of Ni-WC based MMC overlays deposited by plasma transferred arc (PTA) welding. Wear, 376–377, B, 1720-1727.
  • 8. Rutkowska-Gorczyca, M., Ptak, A., Winnicki, M., (2020). Analysis of the tribological properties of Cu-aTiO2 composite coatings applied by the cold spray method. Tribologia, 292(4) 51-57.
  • 9. Czupryński, A., (2019). Flame spraying of aluminum coatings reinforced with particles of carbonaceous materials as an alternative for laser cladding technologies. Materials, 12(21), 3467.
  • 10. Kumar, S., Ghosh, S. K. (2020). Porosity and tribological performance analysis on new developed metal matrix composite for brake pad materials. J. Manuf. Proc., 59, 186-204.
  • 11. Takashi, I., (2006). Overview of trends in advanced composite research and applications in Japan. Adv. Compos. Mater., 15, 3–37.
  • 12. Bokobza, L., (2007). Multiwall carbon nanotube elastomeric composites. A review. Polymer, 48, 4907–4920.
  • 13. Curtin, W.A., Sheldon, B.W., (2004). CNT-reinforced ceramics and metals. Mater. Today, 7, 44–49.
  • 14. Saffar, K.P.A., Najafi, A.R., Moeinzadeh, M.H., Sudak, L.J.A., (2013). Finite element study of crack behavior for carbon nanotube reinforced bone cement. World J. Mech., 3, 13–21.
  • 15. Bakshi, S.R., Singh, V., Balani, K., McCartney, D.G., Seal, S., Agarwal, A., (2008). Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf. Coat. Technol., 202, 5162–5169.
  • 16. Keshri, A.K., Balani, K., Bakshi, S.R., Singh, V., Laha, T., Seal, S., Agarwal, A., (2009). Structural transformations in carbon nanotubes during thermal spray processing. Surf. Coat. Technol., 203, 2193–2201.
  • 17. Wu, Y., Kim, G., (2011). Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing. J. Mater. Process. Technol., 211, 1341–1347.
  • 18. Liao, J., Tan, M., Ramanujan, R.V., Shukla, S., (2011). Carbon nanotube evolution in aluminum matrix during composite fabrication process. Mater. Sci. Forum, 690, 294–297.
  • 19. Bakshi, S.R., Singh, V., Seal, S., Agarwal, A., (2009). Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf. Coat. Technol., 203, 1544–1554.
  • 20. Zeng, X., Zhou, G., Xu, Q., Xiong, Y., Luo Ch., Wu, J., (2010). A new technique for dispersion of carbon nanotube in a metal melt. Mater. Sci. Eng. A, 527, 5335–5340.
  • 21. Kondoh, K., Fukuda, H., Umeda, J., Imai, H., Fugetsu, B., Endo, M., (2010). Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites. Mater. Sci. Eng. A, 527, 4103–4108.
  • 22. He, X., Kitipornchai, S., Liew, K.M., (2005). Buckling analysis of multi-walled carbon nanotubes: A continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids, 53, 303–326.
  • 23. Tan, H., Jiang, L.Y., Huang, Y., Liu, B., Hwang, K.C., (2007). The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials. Compos. Sci. Technol., 67, 2941–2946.
  • 24. Kelly, A., (2006). Composite materials after seventy years. J. Mater. Sci., 41, 905–912.
  • 25. Łatka, L., Michalak, M., Jonda, E. (2019). Atmospheric plasma spraying of Al2O3+13% TiO2 coatings using external and internal injection system. Adv. Mater. Sci., 19(4), 5-17.
  • 26. Musztyfaga-Staszuk, M., Czupryński, A., Kciuk, M. (2018). Investigation of mechanical and anti-corrosion properties of flame sprayed coatings. Adv. Mater. Sci., 18(4), 42-53.
  • 27. Jażdżewska, M., Bartmański, M. (2021). Nanotubular Oxide Layer Formed on Helix Surfaces of Dental Screw Implants. Coatings, 11(2), 115.
  • 28. Mele, C., Bozzini, B., (2010). Localised corrosion processes of austenitic stainless steel bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources, 195 3590-3596.
  • 29. Łatka, L., Michalak, M., Szala, M., Walczak, M., Sokołowski, P., Ambroziak, A., (2021). Influence of 13 wt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings. Surf. Coat. Technol., 410, 126979.
  • 30. Klimpel, A., Dobrzanski, L.A., Lisiecki, A., Janicki, D., (2005). The study of properties of Ni-W2C and Co-W2C powders thermal sprayed deposits. J. Mater. Process. Technol., 164, 1068-1073.
  • 31. Winnicki, M., Baszczuk, A., Jasiorski, M., Małachowska, A., (2017). Corrosion resistance of copper coatings deposited by cold spraying. J. Therm. Spray Technol., 26, 1935–1946.
  • 32. Mele, C., Lionetto, F., Bozzini, B., (2020). An erosion-corrosion investigation of coated steel for applications in the oil and gas field, based on bipolar electrochemistry. Coatings, 10(2), 92.
  • 33. Czupryński, A., Górka, J., Adamiak, M., (2016). Examining properties of arc sprayed nanostructured coatings. Metalurgija, 55, 173–176.
  • 34. Adamiak, M., Czupryński, A., Kopyść, A., Monica, Z., Olender, M., Gwiazda, A., (2018). The properties of arc-sprayed aluminum coatings on armor-grade steel. Metals, 8, 142.
  • 35. Lisiecki, A. Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding. Metals, 2015, 5, 54–69.
  • 36. Szala, M., Łatka, L., Awtoniuk, M., Winnicki, M., Michalak, M., (2020). Neural modelling of APS thermal spray process parameters for optimizing the hardness, porosity and cavitation erosion resistance of Al2O3-13 wt% TiO2 coatings. Processes, 8(12), 1544.
  • 37. Dobrzanski, L.A., Klimpel, A., Bonek, M., Lisiecki, A., (2003). Surface-layer's structure of X40CrMoV5-1 steel remelted and/or WC alloyed with HPDL laser. Mater. Sci. Forum, 437-4, 69-72.
  • 38. Klimpel, A., Dobrzanski, L.A., Lisiecki, A., Janicki, D., (2006). The study of the technology of laser and plasma surfacing of engine valves face made of X40CrSiMo10-2 steel using cobalt-based powders. J. Mater. Process. Technol., 175, 251-256.
  • 39. Laha, T., Agarwal, A., McKechnie, T., Seal, S., (2004). Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater. Sci. Eng. A, 381, 249–258.
  • 40. Łatka, L., Biskup, P., (2020). Development in PTA surface modifications a review. Adv. Mater. Sci., 20(2), 39-53.
  • 41. Tomków, J., Czupryński, A., Fydrych, D. (2020). The abrasive wear resistance of coatings manufactured on high-strength low-alloy (HSLA) offshore steel in wet welding conditions. Coatings, 10(3), 219.
  • 42. Wei, X., Wang, M. S., Bando, Y., Golberg, D., (2011). Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles. Sci. Technol. Adv. Mater., 12, 1–6.
  • 43. Czupryński, A., Górka, J., Adamiak, M., Tomiczek, B., (2016). Testing of flame sprayed Al2O3 matrix coatings containing TiO2. Arch. Metall. Mater., 61, 1363–1370.
  • 44. Moreno-Soriano, R., Soriano-Moranchel, F., Flores-Herrera, L.A., Sandoval-Pineda, J.M., de Guadalupe González-Huerta, R., (2020). Thermal Efficiency of Oxyhydrogen Gas Burner. Energies, 13, 5526.
  • 45. Mele, C., Bocchetta, P., Bozzini, B., (2017). Characterization of the particulate anode of a laboratory flow Zn-air fuel cell. J. Appl. Electrochem., 47, 877-888.
  • 46. Tuinstra, F, Koenig, J.L., (1970). Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130. https://doi.org/10.1063/1.1674108.
  • 47. Pimenta, M.A, Dresselhaus, G, Dresselhaus, M.S, Cancado, L.G., Jorio, A., Saito, R., (2007). Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys., 9, 1276–1290.
  • 48. Hejwowski, T., (2009). Erosive and abrasive wear resistance of overlay coatings. Vacuum, 83, 166–170.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34f9e0a0-b46f-4509-b476-b15c4aa44f5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.