
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY
IM. JANA I JĘDRZEJA ŚNIADECKICH W BYDGOSZCZY

ZESZYTY NAUKOWE NR 270
TELEKOMUNIKACJA I ELEKTRONIKA 23 (2019) 5–21

APPLICATION OF CONVOLUTIONAL NEURON
NETWORK FOR IMAGE PROCESSING

AND INTERPRETATION

Krzysztof Pałczyński
Faculty of Telecommunications, Computer Science and Electrical Engineering,

UTP University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz
e-mail: krzysztof@palczynski.com

Summary: This article describes the application of Convolutional Neural Network
in image processing and describes how it works. There are presented: network
layers, types of activation functions, example of the AlexNet network architec-
ture, the use of the loss function and the cross entropy method to calculate the
loss during tests, L2 and Dropout methods used for weights regularization and
optimization of the loss function using Stochastic Gradient Drop.

Keywords: Convolutional Neural Network, image processing, filtration, convolu-
tion, activation function, loss function, softmax, cross entropy, L2,
Dropout, Stochastic Gradient Drop

1. INTRODUCTION

Image processing is an important scope of research in the modern world. The
computer's ability to understand what a given graphics describes and the use of this
knowledge is needed in such areas as identification of a person, diagnosis of a disease,
description of a photo in natural language or data compression. However, it is a difficult
task due to the following factors:
• Input data size – raster graphics coded in the RGB system are three-dimensional tensors,

in which the first two dimensions are responsible for the length and width of the image,
and the third dimension describes three color channels. The first two dimensions contain
a significant amount of data to properly represent information. For example, a relatively
small 224 by 224 pixel graphics contains 224 ∗ 224 ∗ 3 = 150 528 data samples. De-
spite the small size, and hence inferior image quality, the input tensor is large and re-
quires many computations to obtain satisfactory data from it.

• A multitude of ways to represent the same phenomenon – photos depicting the same
object can be taken from a different angle, with diverse illuminations and from vari-
ous distances. In addition, photos are susceptible to noise resulting from equipment
inaccuracies and quantization errors. This means that the algorithm for interpreting
images must be able to recognize the same object even though every graphics de-
picting the same phenomenon may have distinct set of pixels.

• Graphics ambiguity – the image can present object of class A while being similar to
a typical representation of class B objects. The graphics classification algorithm
must be able to distinguish between these classes despite the lack of a deterministic
way of differentiating between objects.

6 Krzysztof Pałczyński

Convolutional Neural Network is a new approach to solve described problem using
machine learning. It is suitable for interpreting graphics, which is confirmed, among
others, by the international Image Net Large Scale Visual Recognition Challenge
(ILSVRC for short). In this contest, the ability of the algorithms to accurately recognize
and classify the objects shown in the graphics is checked. Since 2012, the winners of
this competition are convolution neural networks. Due to its successes, this branch of
machine learning is gaining popularity in both academic and industrial circles. The
advantages of convolutional neural networks include the small amount of pre-
processing data needed, the ability to interpret photos despite differences in illumina-
tion, viewing angle and image size, reduced chance of over-matching to test data, and
a shorter learning process compared to typical neural networks.

2. CONVOLUTIONAL NEURON NETWORK (CNN) – BASIC

Convolutional neural network is a type of deep neural networks with a hierarchical
structure. There is a fundamental difference between fully connected layers (FC for
short) and convolutional layers. In FC layer, the outputs of all neurons inside N-1 layer
are connected to the inputs of all N-layer neurons, while in the convolutional layer, the
output of neuron inside N layer is connected to a small number of N-1-layer neurons.
This distinction is shown in the Fig. 1.

Fig. 1. Graphic comparison of the Fully Connected layer to the Convolutional Layer

This structure of the convolutional neural network is dictated by the need for regu-
larization. Networks consisting only of FC layers tend to over-fit with training data
resulting in problems in interpreting information received from outside the learning
period. The problem is presented in the Fig. 2.

Blue points are data received for input, while the black lines are approximations
made by the neural network. On the left there is the desired adjustment of the neural
network to the data presented, while on the right is excessive mapping. In the first case,
the network accurately approximated the value of only a few points, but created a sim-
ple data model represented in this case by a parabolic curve. The mapping function has
only one monotonicity change point and a high tolerance factor for abnormal measure-
ments. In contrast, the over-matching on the right results in a very complicated data
model, which by its complexity is susceptible to anomalous information samples and is
generally unstable. This data model very well replicates the examples used for neural
network training, but it is not appropriate to interpret data in the same semantic range
that the network could not learn.

 Application of convolutional neuron... 7

Fig. 2. Graphical comparison of the desired function approximation to the over-matching function

The convolutional neural network is not a homogeneous network. It consists of

different types of layers stacked on top of each other. It consists of layers: convolution-
al, rectifier, pooling and fully connected.

3. CONVOLUTIONAL LAYER

The convolutional layer extracts features of the introduced image. Each convolu-
tional layer has its own filters (kernels) responsible for reducing the input tensor to the
form of an activation map of diminished size. In this way, the neural network carries out
the process of abstracting the input graphics. Each convolutional layer filters the input
data consistently reducing their size and passing the map of extracted features to the
next layer. The neural network learns by correcting the filters.

The result of the graphic processing by the convolutional layer is the activation
map. The activation map is a three-dimensional tensor, in which the first and second
dimensions represent the result of the input image filtration, and the third dimension is
the combination of subsequent image processing results by the convolutional layer fil-
ters. The convolutional layer filter tensor is a square matrix. Image processing involves
making a filter convolute through subsequent areas of graphics corresponding in size
and this process can be described by the following formula (1):

𝑌𝑌𝑖𝑖,𝑗𝑗 = ���𝑎𝑎𝑐𝑐,𝑑𝑑𝑥𝑥(𝑖𝑖+𝑐𝑐−1),(𝑗𝑗+𝑑𝑑−1)�
𝑎𝑎𝑤𝑤

𝑑𝑑=1

𝑎𝑎𝑙𝑙

𝑐𝑐=1

 (1)

where:
𝑌𝑌𝑖𝑖,𝑗𝑗 – the resulting tensor value in the i-th row and j-th column,
𝑥𝑥𝑖𝑖,𝑗𝑗 – input tensor value in the i-th row and j-th column,
𝑎𝑎𝑖𝑖,𝑗𝑗 – value of the input filter in the i-th row and j-th column,
𝑎𝑎𝑙𝑙 , 𝑎𝑎𝑤𝑤 – filter length and width.

 This process is shown in the (Fig. 3) below:

8 Krzysztof Pałczyński

Fig. 3. Presentation of the process of applying the filter to the input image inside convolutional

layer

In the case shown in the Figure (Fig. 3), the image is a 4x4 tensor, while the filter
is a 2x2 square matrix. The 4x4 square matrix can be divided into 9 overlapping 2x2
areas, so the activation map is 3x3. Each numerical value contained in the activation
map is the result of convolution of the image region matrix by the filter.

As the image passes through subsequent convolutional layers, its length and width
are progressively reduced while its depth may increase or decrease depending on the
number of filters used and the network architecture. With each subsequent step, the
graphics are more and more abstracted, less and less reminiscent of the original input
tensor, consisting of increasingly clearly extracted features that allow image interpreta-
tion.

The convolutional layer has optional parameters such as the stride and the padding.
The stride informs the convolutional layer what is the distance between successive areas
of aggregation of input values. In the case presented above, the stride is equal to 1,
which means that the window calculating the value of subsequent cells of the result
matrix is moved by 1. The Figure below (Fig. 3) shows the case in which the stride is
equal to 2.

The window calculating the value of a cell with coordinates [0; 1] is shifted by 2
units horizontally relative to the area calculating the value for the cell [0; 0]. However,
the window for cell [1; 0] is shifted by 2 units vertically relative to the area responsible
for cell [0; 0]. The higher the stride value, the smaller the size of the resulting map. This
parameter is useful in the first convolutional layers to quickly reduce the number of
results that contribute little to the process of image analysis and interpretation.

 Application of convolutional neuron... 9

7 x 7 input volume 3 x 3 output volume

Fig. 4. Graphic representation of the impact of the stride parameter on the filtration process

The padding is a parameter by which the input tensor is extended by rows and col-

umns containing zeros. Because to this, the size of the data to be processed is increased,
which is useful in counteracting the rapid reduction of the size of the interpreted activa-
tion map in later convolutional layers. The default area value is zero, which means no
rows or columns filled with zeros are added. The Figure on the next page (Fig. 5) de-
picts how the padding works:

Fig. 5. Graphical representation of the effect of the padding parameter on a matrix subjected to

filtration

The Figure above (Fig. 5) shows the 32x32x3 input tensor using an padding of 2.

The result of this operation is to increase the input data size to 36x36x3.

10 Krzysztof Pałczyński

You can control the size of the activation map by the number of filters, filter size,
stride and padding. The two-dimensional size of the output tensor is described below (2):

𝑊𝑊𝑦𝑦 =
𝑊𝑊𝑒𝑒 − 𝐹𝐹 + 2𝑂𝑂

𝐾𝐾
+ 1 (2)

where:
𝑊𝑊𝑦𝑦 – output tensor size
𝑊𝑊𝑒𝑒 – input tensor size
𝐹𝐹 – filter size
𝑂𝑂 – padding
𝐾𝐾 – stride

4. RECTIFIER LAYER

The rectifier layer adopts the input of the convolutional layer result and introduces
the non-linearity of values necessary for proper functioning of the neural network. The
following example can be used to understand the importance of nonlinearities in data
processing. There is a neural network consisting of two convolutional layers named
A and B having one filter and performing operations on the X image. The result of the
convolution from the first layer is equal to (3):

𝑥𝑥𝑖𝑖,𝑗𝑗′ = ���𝑎𝑎𝑐𝑐,𝑑𝑑𝑥𝑥(𝑖𝑖+𝑐𝑐−1),(𝑗𝑗+𝑑𝑑−1)�
𝑎𝑎𝑤𝑤

𝑑𝑑=1

𝑎𝑎𝑙𝑙

𝑐𝑐=1

 (3)

However, the result of the second layer of the convolution describes the formula (4):

𝑥𝑥𝑖𝑖,𝑗𝑗′′ = ���𝑏𝑏𝑐𝑐,𝑑𝑑𝑥𝑥(𝑖𝑖+𝑐𝑐−1),(𝑗𝑗+𝑑𝑑−1)
′ �

𝑏𝑏𝑤𝑤

𝑑𝑑=1

𝑏𝑏𝑙𝑙

𝑐𝑐=1

 (4)

What can be written as (5) or (6):

𝑥𝑥𝑖𝑖,𝑗𝑗′′ = � � �𝑏𝑏𝑐𝑐′,𝑑𝑑′���𝑎𝑎𝑐𝑐,𝑑𝑑𝑥𝑥(𝑖𝑖+𝑐𝑐−1),(𝑗𝑗+𝑑𝑑−1)�
𝑎𝑎𝑤𝑤

𝑑𝑑=1

𝑎𝑎𝑙𝑙

𝑐𝑐=1

�
𝑏𝑏𝑤𝑤

𝑑𝑑′=1

𝑏𝑏𝑙𝑙

𝑐𝑐′=1

 (5)

𝑥𝑥𝑖𝑖,𝑗𝑗′′ = � � ���𝑥𝑥(𝑖𝑖+𝑐𝑐−1),(𝑗𝑗+𝑑𝑑−1)𝑎𝑎𝑐𝑐,𝑑𝑑𝑏𝑏𝑐𝑐′ ,𝑑𝑑′�
𝑎𝑎𝑤𝑤

𝑑𝑑=1

𝑎𝑎𝑙𝑙

𝑐𝑐=1

𝑏𝑏𝑤𝑤

𝑑𝑑′=1

𝑏𝑏𝑙𝑙

𝑐𝑐′=1

 (6)

This transformation (6) proves that without an additional layer introducing non-
linearity of results, the subsequent stages of applying filters can be aggregated into one
linear equation. This means that the entire network could be turned into a single layer
with a complex filter. In addition, a network that only performs linear operations would
not be able to detect nonlinear data dependencies. For this reason, there must be a layer
introducing nonlinearity to the output of each convolutional layer.

In convolutional neural networks, the Rectified Linear Unit or ReLU for short, is
often used for this task. ReLU functions is described by formula (7):

 Application of convolutional neuron... 11

𝑅𝑅(𝑥𝑥) = max(0, 𝑥𝑥) (7)

This means that the result of the ReLU function is either zero or an argument of the
function depending on the sign of input. It is easy to implement while being one of the
best activation functions for convolutional neural networks. Below is a Figure (Fig. 6)
comparing the ReLU function graph and two other popular activation functions: sig-
moidal and hyperbolic tangent.

Fig. 6. Graphical comparison of ReLU, hyperbolic tangent function and sigmoid function

The first difference that is easy to see is the simplicity of the ReLU function. Its

formula is a comparison of two values, which means ease of implementation and high-
performance during computation of the result. For comparison, the formula describing
the hyperbolic tangent is (8):

tanh(𝑥𝑥) =
sinh(𝑥𝑥)
cosh(𝑥𝑥) =

𝑒𝑒2𝑥𝑥 − 1
𝑒𝑒2𝑥𝑥 + 1

 (8)

And the sigmoid function is described by the following formula (9):

𝑆𝑆(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 (9)

Both functions require raising the Euler’s number to rational power. This operation is
demanding for the processor and carries an approximation error. If the neural network
had a lot of convolutional layers, it would also have to have a lot of rectifying layers,
which would mean a build up of error.

Another advantage of the ReLU function is the constant derivative. The derivative
of the activation function is necessary for correcting the neural network. The first deriv-
ative of both sigmoid function and hyperbolic tangent is presented below (Fig.7):

12 Krzysztof Pałczyński

Fig. 7. Graph of the first derivative of sigmoidal function (blue) and hyperbolic tangent (red)

These functions have the first derivatives having very small values on almost the

entire range of the X axis. Derivative values are significant only in the vicinity of point
0. This means that if the neuron reaches a value outside this range, the gradient value for
network’s weight correction would be small and there will be needed a lot of repetitions
to change the weights to correct values. This means that the network will have adapta-
tion problems and the learning time will be longer.

The effectiveness of the ReLU function in convolution neural networks intended
for image interpretation has been empirically confirmed. Due to its simplicity, the linear
unit performs very quickly, and due to the constant value of the first derivative in the
(0;∞) range, the convolutional layers are able to correct their weights in a relatively
small number of test iterations.

5. POOLING LAYER

The combination of convolutional layers with rectifying layers is able to effective-
ly recognize images and interpret them. The problem, however, is their dependence on
the position of neurons in individual layers. This dependence makes the sum of layers
without additional ways of processing the results prone to errors caused by graphic
shifts. It is because changing the object's position in the image by just one pixel in any
direction changes the entire activation map of all the convolutional layers.

The solution to this problem is adding the pooling layer. It reduces the size of the
activation map by aggregating the result value in a given window to one result. An
example of a function performed by the pooling layer is to average the values in the
window or select the maximum result. The Figure (Fig. 8) describing the operation of
the pooling layer choosing the maximum value. The Fig. 8 shows a 4x4 square matrix
that has been exposed to the entry of a pooling layer with a 2x2 size window. This
means that the input tensor is divided into 4 2x2 areas and the maximum value is taken
from each area. In the case of the averaging function, the result would be the average
value of the elements of the area.

The pooling layer thus reduces the size of the resulting tensor. This is a desirable
effect because interpreted images are huge tensors and the neural network must reduce
them as much as possible while maintaining the features that are important from the
point of view of the performed action. The pooling layer often has 2x2 selection areas,
which means that the size of the input tensor is reduced four times. Such a reduction
also has a good effect on reducing the dependence of the neural network on the pixel
position of the image, because the smaller the activation map at the entrance of the
convolutional layer, the less important the place where the neuron is.

 Application of convolutional neuron... 13

Single depth slice: Max pool with 2x2 filters
 and stride 2:

Fig. 8. Presentation of the operation of the pooling layer choosing the largest value in the 2x2 range

A common case of using the pooling layer is to introduce it between several

groups of connected convolutional and rectifying layers. The Figure below (Fig. 9)
shows an example architecture of a convolutional neural network, in which the pooling
layer is first added after two connected layers of convolutional with rectifying layers,
and the next pooling layer after one such group.

Fig. 9. Example architecture of a convolutional neural network

6. FULLY CONNECTED LAYER

Fully connected layers (FC for short) also called dense layers are located at the end
of the convolutional neural network. The three previous types of layers are used to ex-
tract significant parts of the image and save them in the least numerous, one-
dimensional feature vector. The task of FC layers is to classify the image based on the
results of earlier layers.

The fully connected layer is called the dense layer because, unlike the convolu-
tional layers, each of its neurons gets the entire transmitted lower layer result vector.
This means that all neurons are fully connected to the entrance of the layer. Often, sev-
eral FC layers are used connected to each other for better image classification. The last
layer of FC in the network determines what class is the object represented in the image.
As a rule, this is accomplished by assigning to each class one neuron informing what is
the degree of similarity of the analyzed graphic to a particular semantic group. An ex-
ample of FC layers connected together is shown in the Fig. 10.

14 Krzysztof Pałczyński

Fig. 10. Example of three layers Fully Connected

7. CNN NETWORK ARCHITECTURE

In order to design the convolutional architecture of the neural network, it is neces-
sary to determine, among others, how many layers of particular types should be created,
how to connect them, how many neurons should be in each convolutional and fully
connected layer, what window sizes will be best in the convolutional and pooling layers
and how many filters should contain each.

One of the first proposed Convolutional Neural Network architectures proposed
was AlexNet. In 2012, this network won the ILSVRC competition by achieving accura-
cy in classifying images from a thousand different classes at 84.7%. For comparison,
the second place was taken by an algorithm that is not a CNN network with an accuracy
of 73.8%. Current network architectures can achieve accuracy above 95%. However,
due to its simplicity, the AlexNet network will be discussed. To simplify the descrip-
tion, individual rectifying layers will not be listed, because by default each convolution-
al layer enters the rectifying layer input. Below is a Table 1 showing a parametric de-
scription of each layer in the network.

Table 1. Presentation of subsequent layers of the AlexNet network

AlexNet Netowrk – Structural Details
Input Output Layer Stride Pad Kernel in out Params

227 227 3 55 55 96 Conv1 4 0 11 11 3 96 34944
55 55 96 27 27 96 Maxpool1 2 0 3 3 96 96 0
27 27 96 27 27 256 Conv2 1 2 5 5 96 256 614656
27 27 256 13 13 256 Maxpool2 2 0 3 3 256 256 0
13 13 256 13 13 384 Conv3 1 1 3 3 256 384 885120
13 13 384 13 13 384 Conv4 1 1 3 3 384 384 1327488
13 13 384 13 13 256 Conv5 1 1 3 3 384 256 884992
13 13 256 6 6 256 Maxpool5 2 0 3 3 256 256 0

Fc6 1 1 9216 4096 37752832
Fc7 1 1 4096 4096 16781312
Fc8 1 1 4096 1000 4097000

Total: 62 378 344

 Application of convolutional neuron... 15

8. LOSS FUNCTION – USE OF SOFTMAX FUNCTION AND CROSS
ENTROPY METHOD

Convolutional neural networks with supervised learning need a loss function,
which estimates the error in image processing. The result of the loss function is used in
the weights correction process. The resulting vector exposed to the output of the last FC
layer determines the belonging of the object represented by the processed graphics to
one of the defined classes. In the process of teaching a neural network, the loss function
checks the numerical result for each group of objects stored in the result vector and
compares it with the correct class specified by the tester. Based on the result of the
comparison, the partial result of the loss function is calculated for each class so that they
are then aggregated into one value of the function loss.

One of the types of loss functions used in neural networks is the Softmax function
together with the cross-entropy method. The Softmax function transforms a vector of any
element values into a vector of numbers from the (0; 1) range, whose sum of all elements
is equal to 1. The Softmax function is used to calculate the normalized partial loss.

The following formula describe Softmax function:

𝑓𝑓𝑖𝑖(𝑧𝑧) =
𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝐾𝐾
𝑗𝑗=1

 (10)

where:
𝑧𝑧 – resulting vector
𝑖𝑖 – index of the element in the result vector 𝑧𝑧, for which grated softmax is

calculated
𝑓𝑓𝑖𝑖(𝑧𝑧) – result of the softmax function for the i-th class from the result vector 𝑧𝑧
𝐾𝐾 – size of the resulting set 𝑧𝑧

Using this formula, the normalized partial loss can be calculated for each class rep-
resented by the result vector. These values should then be aggregated using the cross
entropy method. This method calculates the entropy value of information between the
expected probability distribution 𝑝𝑝 and the obtained distribution 𝑞𝑞. There is a formula
(11) for this method:

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −�𝑝𝑝(𝑥𝑥) log�𝑞𝑞(𝑥𝑥)�
𝐾𝐾

𝑥𝑥=1

 (11)

where:
𝑝𝑝 – expected probability distribution,
𝑞𝑞 – probability distribution calculated using the Softmax function,
𝐾𝐾 – size of both vector 𝑝𝑝 and vector 𝑞𝑞.

An example of the loss function: there is a neural network with a task to determine

whether the photo depicts an object belonging to class A or B. The last FC layer of the
neural network determined the belonging of the input image to individual classes using
the following vector (12):

𝑧𝑧 = [5.45, 3.21] (12)

It means that the network recognized the similarity of the object represented by the photo
to the class A collection is 5.45, and the similarity to the class B collection is 3.21. After
normalizing the scoring using the softmax function, a partial loss vector q was created
equation (13) and value (14):

16 Krzysztof Pałczyński

𝑞𝑞 = �
𝑒𝑒5.45

𝑒𝑒5.45 + 𝑒𝑒3.21 ,
𝑒𝑒3.21

𝑒𝑒5.45 + 𝑒𝑒3.21� (13)

𝑞𝑞 = [0.903784, 0.096216] (14)

The object shown in the picture belonged to class A. Because in this case the object can
have only once class label, it means that the object does not belong to class B. The ex-
pected probability distribution is (15):

𝑝𝑝 = [1.0] (15)

The value of cross entropy for vectors 𝑝𝑝 and 𝑞𝑞 is shown in (16):

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −(1 ∗ log 0.903784 + 0 ∗ log 0.096216)
(16)

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = 0.043935

The value of cross entropy is equal to 0.043935. The result of the loss function for
the processing of a given image is equal to the value of cross entropy plus a regulating
factor. This article describes the method of regulating performing Dropout method,
which does not need to add a regularization penalty, so this factor is set to zero. Weight
regularization will be described later. The formula for the final value of the loss func-
tion is presented in equation (17):

𝐿𝐿 = 𝐻𝐻(𝑝𝑝, 𝑞𝑞) + 𝜆𝜆𝑅𝑅(𝑊𝑊)

𝐿𝐿 = 0.043935 + 0

𝐿𝐿 = 0.043935

(17)

where:
𝑅𝑅 – function regulating the weights tensor,
𝑊𝑊 – weights tensor,
𝜆𝜆 – constant coefficient determining the importance of weights regularization.

9. WEIGHTS REGULARIZATION – APPLICATION OF
THE DROPOUT METHOD

Regularization is a process aimed at preventing over-matching of the neural network to
test data. To achieve this goal, the neural network in the learning process should correct the
weights in a way that simultaneously reduces the value of the loss function and favors the
use of as many image features as possible instead of focusing on a small amount of graphics’
areas. One way is to introduce a penalty for having significantly higher numbers in the ten-
sor than others. This task is performed by L2 Normalization with the formula (18):

𝑅𝑅(𝑊𝑊) = ��𝑊𝑊𝑖𝑖,𝑗𝑗
2

𝑙𝑙

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1

 (18)

where:
𝑅𝑅(𝑊𝑊) – result of regularization penalty
𝑊𝑊 – weights matrix
𝑘𝑘, 𝑙𝑙 – weights matrix sizes

 Application of convolutional neuron... 17

The penalty before adding to the cross entropy result is multiplied by the factor 𝜆𝜆.
It defines the importance of regularization penalty and how much it forces change on
the neural network.

Another way to introduce over-matching protection is by using the Dropout meth-
od. It is often used in convolutional neural networks and it consists in the fact that dur-
ing network training, each neuron has an arbitrarily defined chance of being zeroed for
the duration of one test data processing. It means that each neuron can return the num-
ber 0 instead of its true value, what is an equivalent of not having effect on image inter-
pretation. The Fig. 11 shows the idea of the Dropout method:

a) Standard Neural Net b) After aplying droput

Fig. 11. Graphical representation of the effects of the Dropout function

The effect of this operation is to force the neural network to involve more neurons
to process information. The use of this method extends the time needed for network
training, but it increases its effectiveness in interpreting data outside the test range.

10. TRAINING THE CNN NETWORK – APPLICATION
THE STOCHASTIC GRADIENT DESCENT

The neural network learning process can be defined as the search for a weights
tensor that minimizes the value of the loss function. In order to train the network as
quickly as possible, it is necessary to use the optimal search method global minimum.
The Stochastic Gradient Descent is effective for this purpose.

This method consists in randomly selecting a small set of test data from the large
pool of available samples and performing the Gradient Descent optimization method on
them instead of the entire test data set. The Gradient Descent method used in neural
networks is to calculate partial derivatives of the loss function relative to the weights
matrix and the regularization penalty, and then perform back propagation of error into
the lower layers to compute the error gradient on them. The first step is to compute the
derivative of the loss function with the formula (19):

18 Krzysztof Pałczyński

𝐿𝐿 = −�𝑝𝑝(𝑥𝑥) log�𝑞𝑞(𝑥𝑥)�
𝐾𝐾

𝑥𝑥=1

+ 𝜆𝜆𝑅𝑅(𝑊𝑊) (19)

It means that the derivative of the loss function is given by the formula (20):

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

=
𝜕𝜕�−∑ 𝑝𝑝(𝑥𝑥) log�𝑞𝑞(𝑥𝑥)�𝐾𝐾

𝑥𝑥=1 �
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

+
𝜕𝜕�𝜆𝜆𝑅𝑅(𝑊𝑊)�
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

 (20)

Where 𝑊𝑊𝑖𝑖,𝑗𝑗 is the cell from the i-th row and j-th column of the weight matrix belonging
to the first tier in the network. In this case, the regularization penalty is zero, so the
gradient of the loss function can be simplified (21):

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

= −�
𝜕𝜕(𝑝𝑝(𝑥𝑥) log�𝑞𝑞(𝑥𝑥)�

𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

𝐾𝐾

𝑥𝑥=1

 (21)

The described neural network classifies objects belonging to only one class. This means
that the vector 𝑝𝑝 contains one value 1 and the remainder 0. This allows to further reduce
the gradient calculations (22):

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

= −
𝜕𝜕(log�𝑞𝑞𝑖𝑖(𝑥𝑥)�

𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗
 (22)

Where 𝑖𝑖 is the index indicating the class the object should get. Because the derivative of
the natural logarithm is equal to (23):

𝜕𝜕 log(𝑥𝑥)
𝜕𝜕𝑥𝑥

=
1
𝑥𝑥

 (23)

And derivatives can be combined according to the principle (24):

𝜕𝜕𝑏𝑏
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑏𝑏
𝜕𝜕𝑎𝑎

𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕

 (24)

The derivative of the loss function can be shortened to the form (25):

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

= −
𝜕𝜕 log�𝑞𝑞𝑖𝑖(𝑥𝑥)�
𝜕𝜕𝑞𝑞𝑖𝑖(𝑥𝑥)

𝜕𝜕𝑞𝑞𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

= −
1

𝑞𝑞𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑞𝑞𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

= −
1

𝑞𝑞𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑞𝑞𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

(25)

The 𝑞𝑞 stands for Softmax function with the formula (26):

𝑞𝑞𝑖𝑖(𝑥𝑥) =
𝑒𝑒𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝑥𝑥𝑗𝑗𝐾𝐾
𝑗𝑗=1

 (26)

The derivative of the softmax function for 𝑖𝑖 = 𝑗𝑗 is equal to (27):

 Application of convolutional neuron... 19

𝜕𝜕𝑞𝑞𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝑞𝑞𝑖𝑖(𝑥𝑥)�1 − 𝑞𝑞𝑗𝑗(𝑥𝑥)� (27)

while for 𝑖𝑖 ≠ 𝑗𝑗 (28):

𝜕𝜕𝑞𝑞𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑗𝑗

= −𝑞𝑞𝑖𝑖(𝑥𝑥)𝑞𝑞𝑗𝑗(𝑥𝑥) (28)

At this point of consideration, an unknown element is the expression (29):

𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

 (29)

The vector 𝑥𝑥 is the output vector of the last FC layer. Each number in it is the result of
computation of its neuron represented by the formula (30):

𝑥𝑥𝑗𝑗 = max�0,�𝑥𝑥𝑎𝑎′𝑊𝑊𝑎𝑎
′

𝑊𝑊′�����

𝑎𝑎=1

� (30)

where:
𝑊𝑊′ – weight matrix of the last FC layer
𝑥𝑥′ – the resulting vector of the lower layer, whose results are input for this

layer

This means that the gradient (30) for 𝑥𝑥𝑗𝑗 > 0 can be written as (31):

𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

= �
𝜕𝜕𝑥𝑥𝑎𝑎′𝑊𝑊𝑎𝑎

′

𝜕𝜕𝑥𝑥𝑎𝑎′
𝜕𝜕𝑥𝑥𝑎𝑎′

𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗

𝑊𝑊′�����

𝑎𝑎=1

 (31)

The derivative of the loss function relative to the weight matrix of the first layer of
the neural network now depends on the sum of the derivatives of multiplication of indi-
vidual lower layer outputs by the penultimate layer weights with the weights of the last
layer relative to the penultimate layer result vector and the derivative of the penultimate
layer outputs relative to the matrix of the last layer weights. The first term can already
be calculated, because the values of the vectors 𝑊𝑊′ and 𝑥𝑥′are known at this stage of the
computation. This derivative is equal to (32):

∇𝐿𝐿𝑥𝑥 = −
1

𝑞𝑞𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑞𝑞𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝜕𝜕𝑥𝑥𝑎𝑎′𝑊𝑊𝑎𝑎

′

𝜕𝜕𝑥𝑥𝑎𝑎′

𝑊𝑊′�����

𝑎𝑎=1

∇𝐿𝐿𝑥𝑥 = −
1

𝑞𝑞𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑞𝑞𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑊𝑊′

(32)

For 𝑖𝑖 = 𝑗𝑗:
∇𝐿𝐿𝑥𝑥 = −�1 − 𝑞𝑞𝑗𝑗(𝑥𝑥)��𝑊𝑊′ (33)

Whereas for 𝑖𝑖 ≠ 𝑗𝑗:
∇𝐿𝐿𝑥𝑥 = �1 − 𝑞𝑞𝑗𝑗(𝑥𝑥)��𝑊𝑊′ (34)

20 Krzysztof Pałczyński

The value ∇𝐿𝐿𝑥𝑥 is the so-called local error gradient. The gradient 𝜕𝜕𝑥𝑥𝑎𝑎
′

𝜕𝜕𝑊𝑊𝑖𝑖,𝑗𝑗
 can be calcu-

lated by back propagating it to the lower layer. The Gradient method consists in the next
calculation of local gradients and the propagation of the remaining error gradient further
up to the first layer, in which the process of calculating the gradient of the loss function
ends. After calculating all local gradient values, you can make corrections in the
weights. The correction is the result of multiplying the local gradient value with the
learning step. The learning step is an empirically determined parameter for a given task.
Formula for correction (35):

𝑘𝑘 = ∇𝐿𝐿𝑥𝑥𝑖𝑖𝑠𝑠 (35)
where:

𝑠𝑠 − learning step.

11. SUMMARY

Convolutional Neural Networks are able to perform many tasks in the field of im-
age processing with a minimum amount of processing of input data and special algo-
rithms written specifically to extract features of a given class. This means that the CNN
network can approach the problem in an abstract way, enabling the use of one network
architecture to classify many types of objects. These networks are both flexible and
precise. Scientists and engineers are increasingly turning to this type of network to solve
problems in the field of image, signal and natural language processing. These networks
have only been popular for several years, so one can expect dynamic development of
this field.

BIBLIOGRAPHY

 [1] A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
 https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-

Convolutional-Neural-Networks-Part-2/
 [2] A Gentle Introduction to Pooling Layers for Convolutional Neural Networs
 https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks
 [3] Application of the Cross Entropy Clustering method in biometrics
 https: //www.mini.pw.edu.pl/~homenda/common/Dr_Krzysztof_Misztal.pdf
 [4] Applying Gradient Descent in Convolutional Neural Networks – Nan Cui
 https://iopscience.iop.org/article/10.1088/1742-6596/1004/1/012027/pdf
 [5] Classification and Loss Evaluation – Softmax and Cross Entropy Loss
 https://deepnotes.io/softmax-crossentropy
 [6] CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more,
 https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-

resnet-and-more-666091488df5
 [7] CNN – Fully Connected Layer (FC),
 http://sciagaprogramisty.blogspot.com/2018/03/fully-connected-layer-fc-warstwa-

w-peni.html
 [8] Convolutional Neural Networks (CNN): Softmax & Cross-Entropy
 https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-

softmax-crossentropy

https://deepnotes.io/softmax-crossentropy
https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-softmax-crossentropy
https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-softmax-crossentropy

 Application of convolutional neuron... 21

 [9] CS231n Convolutional Neural Networks for Visual Recognition
 http://cs231n.github.io/linear-classify/#softmax
[10] Derivative of the Sigmoid function, https://towardsdatascience.com/derivative-of-

the-sigmoid-function-536880cf918e
[11] Difference between AlexNet, VGGNet, ResNet and Inception
 https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-

7baaaecccc96
[12] Dropout in (Deep) Machine learning
 https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-

less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
[13] Hope T., Resheff Y.S., Lieder I., 2017. Learning TensorFlow. O'Reily Media.
[14] Lecture Collection, Convolutional Neural Networks for Visual Recognition

(Spring 2017) – Fei-Fei Li, Justin Johnson, Serena Yeung –
 https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
[15] Notes on Backpropagation – Peter Sadowski
 https: //www.ics.uci.edu/~pjsadows/notes.pdf
[16] Proofs of Derivatives of Hyperbolics,

http://math2.org/math/derivatives/more/hyperbolics.htm

ZASTOSOWANIE KONWOLUCYJNYCH SIECI NEURONOWYCH
DO PRZETWARZANIA I INTERPRETACJI OBRAZÓW

Streszczenie

Artykuł ten opisuje zastosowanie Konwolucyjnych Sieci Neuronowych w prze-
twarzaniu obrazów. W celu lepszego zrozumienia tematu opisano sposób działa-
nia sieci. Przedstawiono sieci wielowarstwowe, rodzaje funkcji aktywacji, przy-
kład architektury sieci AlexNet. W artykule skupiono się na opisaniu wykorzystania
funkcji straty oraz metody entropii krzyżowej do obliczenia straty w czasie te-
stów. Opisano również sposoby normalizacji wag L2 i Dropout oraz optymaliza-
cję funkcji straty za pomocą Stochastycznego Spadku Gradientu.

Słowa kluczowe: Konwolucyjne Sieci Neuronowe, przetwarzanie obrazów, filtra-

cja, splot, funkcja aktywacji, funkcja straty, softmax, entropia
krzyżowa, L2, Dropout, Stochastyczny Spadek Gradientu

https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

