PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of different gridded precipitation products in trend analysis of precipitation features over Iran

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, gridded precipitation products have been widely used in hydrology studies and other felds of water sciences. This study evaluated the potential of several gridded precipitation products, including GPCC, TRMM, CRU, ERA-Interim, and ERA5, in trend analysis of precipitation depth and the number of rainy days in various regions of Iran. Moreover, the observational precipitation data of the daily time series were collected from 68 Iranian synoptic stations. The Mann–Kendall test was conducted to determine gridded and observed precipitation trends in the period of 1997 to 2017. The probability of detection (POD) and false alarm ratio (FAR) indices were utilized to compare gridded and observed precipitation trends. Results showed that the best consistency (POD: 52% ~ 80%, FAR: 60% ~ 88%) was observed between the observed trends of the number of rainy days and those obtained by TRMM product over different regions of Iran. Moreover, ERA-Interim ofered a better performance (POD: 50% ~ 100%, FAR: 58% ~ 72%) in the trend analysis of precipitation depth in Iran. The consistency between observational and gridded precipitation trends has never been analyzed in Iran at this level; therefore, this is considered a unique analysis. Besides, the generated maps of precipitation products’ performance provide a comprehensive view of better water resources management over different regions of Iran.
Czasopismo
Rocznik
Strony
959--974
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Department of GIS/RS, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • 1. Abdelwares M, Lelieveld J, Zittis G et al (2020) A comparison of gridded datasets of precipitation and temperature over the Eastern Nile Basin region. Euro-Mediterranean J Environ Integr. https://doi.org/10.1007/s41207-019-0140-y
  • 2. Abdolmanafi A, Saghafian B, Aminyavari S (2020) Evaluation of global ensemble prediction models for forecasting medium to heavy precipitations. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-020-00731-8
  • 3. Abtew W, Obeysekera J, Iricanin N (2011) Pan evaporation and potential evapotranspiration trends in South Florida. Hydrol Process 25:958–969. https://doi.org/10.1002/hyp.7887
  • 4. Alizadeh-Choobari O, Adibi P, Irannejad P (2018) Impact of the El Niño-Southern Oscillation on the climate of Iran using ERA-Interim data. Clim Dyn. https://doi.org/10.1007/s00382-017-4055-5
  • 5. Aminyavari S, Saghafian B, Delavar M (2018) Evaluation of TIGGE ensemble forecasts of precipitation in distinct climate regions in Iran. Adv Atmos Sci. https://doi.org/10.1007/s00376-017-7082-6
  • 6. Araghi A, Mousavi-Baygi M (2020) Variability in snowfall/total precipitation-day ratio in Iran. Theor Appl Climatol 140:547–558. https://doi.org/10.1007/s00704-020-03101-x
  • 7. Ardeshirtanha K, Sharafati A (2020) Assessment of Water Supply Dam Failure Risk: Development of New Stochastic Failure Modes and Effects Analysis. Water Resour Manag 1–15
  • 8. Barnes LR, Schultz DM, Gruntfest EC, et al (2009) Corrigendum: False alarm rate or false alarm ratio? Weather Forecast.
  • 9. BLACK E (2010) Past , present and future precipitation in the Middle East insights from models and. doi https://doi.org/10.1098/rsta.2010.0199
  • 10. Darand M, Mirzaei N (2018) The relationships between precipitation amounts, number of rain days, and relative vorticity in the mid-troposphere over Iran. Weather
  • 11. Darand M, Amanollahi J, Zandkarimi S (2017) Evaluation of the performance of TRMM Multi-satellite precipitation analysis (TMPA) estimation over Iran. Atmos Res. https://doi.org/10.1016/j.atmosres.2017.02.011
  • 12. Derin Y, Yilmaz KK (2014) Evaluation of multiple satellite-based precipitation products over complex topography. J Hydrometeorol. https://doi.org/10.1175/JHM-D-13-0191.1
  • 13. El Kenawy AM, Mccabe MF (2016) A multi-decadal assessment of the performance of gauge- and model-based rainfall products over Saudi Arabia: climatology, anomalies and trends. Int J Climatol. https://doi.org/10.1002/joc.4374
  • 14. Fallah A, Sungmin O, Reza G, Peter R (2020) Evaluation of precipitation datasets against local observations in southwestern Iran. 4102–4116. doi: https://doi.org/10.1002/joc.6445
  • 15. Ghozat A, Sharafati A, Hosseini SA (2021) Long-term spatiotemporal evaluation of CHIRPS satellite precipitation product over different climatic regions of Iran. Theor Appl Climatol. https://doi.org/10.1007/s00704-020-03428-5
  • 16. Heiblum RH, Koren I, Altaratz O (2011) Analyzing coastal precipitation using TRMM observations. Atmos Chem Phys. https://doi.org/10.5194/acp-11-13201-2011
  • 17. Javanmard S, Yatagai A, Nodzu MI et al (2010) Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM-3B42 over Iran. Adv Geosci 25:119–125. https://doi.org/10.5194/adgeo-25-119-2010
  • 18. Katiraie-Boroujerdy PS, Nasrollahi N, Hsu K, lin, Sorooshian S, (2016) Quantifying the reliability of four global datasets for drought monitoring over a semiarid region. Theor Appl Climatol. https://doi.org/10.1007/s00704-014-1360-3
  • 19. Kendall MG (1957) Rank Correlation Methods. 4th Edition
  • 20. Kheimi MM, Gutub S (2015) Assessment of Remotely-Sensed Precipitation Products Across the Saudi Arabia Region. Int J Water Resour Arid Environ
  • 21. Köppen, Wladimir; Geiger R (1936) Handbuch der Klimatologie: Das geographische System der Klimate
  • 22. Li D, Yang K, Tang W et al (2020) Characterizing precipitation in high altitudes of the western Tibetan plateau with a focus on major glacier areas. Int J Climatol. https://doi.org/10.1002/joc.6509
  • 23. Mann H (1945) Mann Nonparametric test against trend. Econometrica
  • 24. Moazami S, Golian S, Kavianpour MR, Hong Y (2013) Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. Int J Remote Sens 34:8156–8171. https://doi.org/10.1080/01431161.2013.833360
  • 25. Modarres R (2006) Regional precipitation climates of Iran. J Hydrol (New Zealand) 45:13–27
  • 26. Modarres R, Sarhadi A (2009) Rainfall trends analysis of Iran in the last half of the twentieth century. J Geophys Res 114:D03101. https://doi.org/10.1029/2008JD010707
  • 27. Önöz B, Bayazit M (2003) The power of statistical tests for trend detection. Turkish J Eng Environ Sci 27:247–251. https://doi.org/10.3906/sag-1205-120
  • 28. Pour SH, Wahab AKA, Shahid S (2020a) Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmos Res. https://doi.org/10.1016/j.atmosres.2019.104704
  • 29. Pour SH, Wahab AKA, Shahid S (2020b) Spatiotemporal changes in precipitation indicators related to bioclimate in Iran. Theor Appl Climatol. https://doi.org/10.1007/s00704-020-03192-6
  • 30. Raziei T, Sotoudeh F (2017) Investigation of the accuracy of the European Center for Medium Range Weather Forecasts (ECMWF) in forecasting observed precipitation in different climates of Iran. J Earth Sp Phys
  • 31. Raziei T, Bordi I, Pereira LS, Sutera A (2010) Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets. Hydrol Earth Syst Sci 14:1919–1930. https://doi.org/10.5194/hess-14-1919-2010
  • 32. Safari B (2012) Trend Analysis of the Mean Annual Temperature in Rwanda during the Last Fifty Two Years. J Environ Prot (Irvine, Calif). doi: https://doi.org/10.4236/jep.2012.36065
  • 33. Sarmadi F, Shokoohi A (2015) Regionalizing precipitation in Iran using GPCC gridded data via multivariate analysis and L-moment methods. Theor Appl Climatol. https://doi.org/10.1007/s00704-014-1292-y
  • 34. Sharafati A, Nabaei S, Shahid S (2020) Spatial assessment of meteorological drought features over different climate regions in Iran. Int J Climatol. https://doi.org/10.1002/joc.6307
  • 35. Sharifi E, Steinacker R, Saghafian B (2016) Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: preliminary results. Remote Sens. https://doi.org/10.3390/rs8020135
  • 36. Spearman C (1904) The proof and measurement of association between two things. Am J Psychol. https://doi.org/10.2307/1412159
  • 37. Yazdi J, Neyshabouri SAAS, Golian S (2013) A stochastic framework to assess the performance of flood warning systems based on rainfall-runoff modeling. https://doi.org/10.1002/hyp
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34f1fcf9-c8ee-48ec-a886-39ed8c1fc381
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.