PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recovery of Alum Sludge by Using Membrane-Based Electrochemical Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of aluminum sulfate (Al2SO4) coagulant in water treatment plants generates large amount of sludge residues containing the alum hydroxide precipitates and organic matter. Due to its amphoteric characteristic, this sludge by-product offers alum coagulant recovery by using electrochemical process, before safe disposal to the environment. This study is aimed at evaluating the efficiency of membrane-based electrochemical processes to recover aluminum from the filtrate of the acidified sludge. The dried alum sludge was acidified using sulfuric acid at pH 3, and then centrifuged to obtain the filtrate. Organic content of the filtrate was measured by means of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD), i.e., 295.8 mg/L and 9,666.7±942.81 mg/L, respectively. In addition, the concentration of Al, Fe, Cu, and Cr was 1,194 mg/L, 515 mg/L, 0.559 mg/L, and 0.217 mg/L, respectively. The two-compartment electrochemical reactor was separated by using Cation Exchange Membrane (CEM) and Anion Exchange Membrane (AEM), and operated in a batch system for 10 hours with an electrical current of 300 mA. The results showed that the use of CEM in electrolysis with the electrodes distances of 1 cm increased the aluminum recovery up to 66.74% with the TOC removal of 24.04% compared to the use of AEM. An electrochemical process using CEM can be suggested to obtain organic-free recovery stream containing higher recovery of alum.
Rocznik
Strony
237--247
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
Bibliografia
  • 1. Adhikari S., Lee J., Hebert K.R. 2008. Formation of aluminum hydride during alkaline dissolution of aluminum. J. Electrochem. Soc. 155 (1): 16–21.
  • 2. Ahmad T., Ahmad K., Alam M. 2015. The reuse of water treatment sludge as a coagulant for post-treatment of UASB reactor treating urban wastewater. J. Cleaner Prod. 96: 272–281.
  • 3. American Public Health Association, American Water Works Association, and Water Environment Federation. 2012. Standard Methods for Examination of Water and Wastewater 22nd ed. Washington DC.
  • 4. Barakwan R.A., Trihadiningrum Y., Bagastyo A.Y. 2019. Characterization of alum sludge from Surabaya Water Treatment Plant, Indonesia. J. Ecolog. Engin. 20(5):7–13.
  • 5. Barazesh J.M., Prasse C., Sedlak D.L. 2016. Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions. Environ. Sci. Technol. 16: 167–177.
  • 6. Chen X., Chen G., Yue P.L. 2000. Separation of pollutants from restaurant wastewater by electrocoagulation. Sep. Purif. Technol. 19: 65–76.
  • 7. Cheng W.P., Fu C.H., Chen P.H., Yu R.F. 2014. Factors affecting aluminum dissolve from acidified water purification sludge. Int. J. Chem. Mol. Eng. 8(8):878–881.
  • 8. Cherifi M., Boutemine N., Laefer D.F., Hazourli S. 2016. Effect of sludge pH and treatment time on the electrokinetic removal of aluminum from water potabilization treatment sludge. CR Chim 19: 511–516.
  • 9. Dahhou M. 2017. Drinking water sludge of the Moroccan capital: statistical analysis of its environmental aspects. J. Taibah Univ. Sci. 749–758.
  • 10. Diaz C.B., Guerrero V.V., Rivas N.G., Nunez F.U. 2014. Double aluminum recovery and its reuse in wastewater treatment. Int. J. Environ. Sci. Technol. 12(9):2979–2986.
  • 11. Dubber D., Gray N.F. 2010. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. J. Environ. Sci. Health Part A 45(12): 1595–1600.
  • 12. El-Didamony H., Khalil K.A., Heikal M. 2014. Physico-chemical and surface characteristics of some granulated slag–fired drinking water sludge composite cement pastes. HBRC J. 10: 73–81.
  • 13. EPA (United States Environmental Protection Agency). 2011. Drinking water treatment plant residuals management technical report: EPA 820-R-11–003. Environmental Protection Agency, United States.
  • 14. Evuti A.M., Lawal M. 2011. Recovery of coagulants from water works sludge: A review. Pelagia Research Library 2(6): 410–417.
  • 15. Fan J., He Z., Ma L.Q., Yang Y., Stoffella P.J. 2014. Impacts of calcium water treatment residue on the soil-water-plant system in citrus production. Plant Soil 374: 993–1004.
  • 16. Hong G.X., Hao C.G., Chii S. 2005. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage. Water Res. 39(15): 433–3440.
  • 17. Ippolito J.A., Barbarick H.A., Elliott. 2011. Drinking water treatment residuals: a review of recent uses. J. Environ. Qual. 40(1): 1–12.
  • 18. Keeley J., Jarvis P., Judd S.J. 2014. Coagulant recovery from water treatment residuals: A review of applicable technologies. Environ Sci. Technol 44: 2675–2719.
  • 19. Keeley J., Jarvis P., Smith A.D., Judd S.J. 2016. Coagulant recovery and reuse for drinking water treatment. Water Res.88 (1): 502–509.
  • 20. Kumar S., Pande S., Verma P. 2015. Factor effecting electro-deposition process. Int. J. Curr. Eng. Technol. 5(2): 700–703.
  • 21. Li C.W., Lin J.L., Kang S.F., Liang C.L. 2005. Acidification and alkalinization of textile chemical sludge: volume/solid reduction, dewaterability, and Al (III) recovery. Sep.Purif. Technol. 42: 31–37.
  • 22. Liu H., Qu J., Zhao X. 2010. Electrocoagulation in water treatment. Electrochem. Environ. 1: 245–262.
  • 23. MacCrehan W.A., Durst R.A., Bellama J.M. 2010. Electrochemical detection in liquid chromatography: application to organometallic speciation. Anal. Lett. 10: 1175–1188.
  • 24. Ministry for The Environment of Republic Indonesia. 2014. State Ministry for The Environment Decree of Republic Indonesia No. 5/2014 concerning Quality Standard of Wastewater, Jakarta, Indonesia. (In Indonesian)
  • 25. Muisa N., Hoko Z., Chifamb P. 2011. Impacts of alum residues from Morton Jaffray water works on water quality and fish, Harare, Zimbabwe. Phys. Chem. Earth. Parts. A/B/C 36: 853–864.
  • 26. Nair A.T., Ahammed M.M. 2017. Influence of sludge characteristics on coagulant recovery from water treatment sludge: a preliminary study. J Mater Cycles Waste Manag. 19: 1228–1234.
  • 27. Prakash P., Hoskins D., Sengupta A.K. 2004. Application of homogeneous and heterogeneous cationexchange membranes in coagulant recovery from water treatment plant residuals using donnan membrane process. J.Membr. Sci.237: 131–144.
  • 28. Prakash P., Sengupta A.K. 2003. Selective coagulant recovery from water treatment plant residuals using donnan membrane process. Environ. Sci. Technol. 37(19): 4468–4474.
  • 29. Rodríguez N.H., Ramírez S.M., Varela M.T.B., Guillem M., Puig J., Larrotcha E., Flores J. 2011. Evaluation of spray-dried sludge from drinking water treatment plants as a prime material for clinker manufacture. Cem. Concr. Compos. 33: 267–275.
  • 30. Rozendal R.A., Sleutels T.H.J.A., Hamelers H.V.M., Buisman C.J.N. 2008. Effect of ion exchange membrane on biocatalyzed electrolysis of wastewater. Water Sci. Technol. 57: 1757–1762.
  • 31. Sarkar S., Sengupta A.K., Prakash P. 2010. The donnan membrane principle: opportunities for sustainable engineered processes and materials. Environ. Sci. Technol. Feature 44: 1161–1166.
  • 32. Scanell W., Duffy L.K. 2007. Effects of total dissolved solids on aquatic organisms. Am. J. Environ. Sci. 3: 1–6.
  • 33. Sengupta A.K. 2002. Process for selective coagulant recovery from water treatment plant sludge. US 6945047 B1, United States.
  • 34. Tantawy M.A. 2015. Characterization and pozzolanic properties of calcined alum sludge. Mater Res Bull 61: 415–421.
  • 35. Varcoe J.R., Atanassov P., Dekel D.R., Herring A.M., Nijmeijer K., Scott K., Xu T., Zhuang L. 2014. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7: 3135–3139.
  • 36. Xu G.R., Yan Z.C., Wang Y.C., Wang N. 2009. Recycle of alum recovered from water treatment sludge in chemically enhanced primary treatment. J. Hazard. Mater 161: 663–669.
  • 37. Xu H., Ding M., Shen K., Cui J., Chen W. 2017. Removal of aluminum from drinking water treatment sludge using vacuum electrokinetic technology. Chemosphere 173: 45–60.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34ede674-ade2-48bf-86d0-a56ea07ec6a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.