Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper focuses on assessing the thermal state of a marine gas turbine plant (MGTP), with particular attention being given to the measurement of turbine rotor component temperatures using a specially developed telemetric measurement system (TMS). The study was conducted within the framework of research aimed at evaluating the effects of reduced relative air temperature, which is supplied by the high-pressure compressor (HPC) through nozzle guide vanes (NGV) and a twisting grid (TG) inside the rotor blades (RB) of a high-pressure turbine (HPT), on the thermal state of the HPT rotor. This temperature reduction is achieved via a pre-swirl technique, in which the cooling air is directed toward rotor rotation. The results obtained demonstrate new opportunities for monitoring the thermal condition of turbine components during the modernisation of MGTPs. This approach contributes to improving the overall efficiency of the system by enabling an increase in the gas flow temperature at the inlet to the HPT’s first stage.
Czasopismo
Rocznik
Tom
Strony
78--86
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine
autor
- Admiral Makarov National University of Shipbuilding, Ukraine
autor
- Jiangsu Maritime Institute, China
autor
- Institute of Naval Architecture, Gdańsk University of Technology, Gdańsk, Poland
Bibliografia
- 1. Radchenko R, Radchenko A, Serbin S, Kantor S, Portnoi B. Gas turbine unit inlet air cooling by using an excessive refrigeration capacity of absorption-ejector chiller in booster air cooler. E3S Web of Conferences 2018. https://doi.org/10.1051/e3sconf/20187003012.
- 2. Radchenko A, Trushliakov E, Kosowski K, Mikielewicz D, Radchenko M. Innovative turbine intake air cooling systems and their rational designing. Energies 2020. https://doi.org/10.3390/en13236201.
- 3. Odila CCE, Saturday EG, Ebieto CE. A review of gas turbine inlet cooling technologies. International Journal of Frontiers in Engineering and Technology Research 2023. https://doi.org/10.53294/ijfetr.2023.5.1.0020.
- 4. Xu L, Sun Z, Ruan Q, Xi L, Gao J, Li Y. Development trend of cooling technology for turbine blades at super-high temperature of above 2000 K. Energies 2023. https://doi.org/10.3390/en16020668.
- 5. Wang W, Yan Y, Zhou Y, Cui J. Review of advanced effusive cooling for gas turbine blades. Energies 2022. https://doi.org/10.3390/en15228568.
- 6. Luabi A, Hamza N. Cooling process of gas turbine blade: a comparison study. Al-Qadisiyah Journal for Engineering Sciences 2020. https://doi.org/10.30772/qjes.v13i3.661.
- 7. Chang SW, Wu PS, Wan TY, Cai WL. A review of cooling studies on gas turbine rotor blades with rotation. Inventions 2023; 8(1): 21. https://doi.org/10.3390/inventions8010021.
- 8. 8. Khudheyer AF, Dhaiban HT. Numerical study of heat transfer in cooling passages of turbine blade. Journal of Engineering 2023. https://doi.org/10.31026/j.eng.2013.03.05.
- 9. Mansouri Z, Belamadi R. The influence of inlet swirl intensity and hot-streak on aerodynamics and thermal characteristics of a high pressure turbine vane. Chinese Journal of Aeronautics 2021. https://doi.org/10.1016/j.cja.2020.12.036.
- 10. Serbin S, Burunsuz K, Chen D, Kowalski J. Investigation of the characteristics of a low-emission gas turbine combustion chamber operating on a mixture of natural gas and hydrogen. Polish Maritime Research 2022. https://doi.org/10.2478/pomr-2022-0018.
- 11. Serbin S, Diasamidze B, Gorbov V, Kowalski J. Investigations of the Emission Characteristics of a Dual-Fuel Gas Turbine Combustion Chamber Operating Simultaneously on Liquid and Gaseous Fuels. Polish Maritime Research 2022. https://doi.org/10.2478/pomr-2021-0025.
- 12. Chen D, Serbin S, Burunsuz K. Features of a gas turbine combustion chamber in operation with gaseous ammonia. Fuel 2024. https://doi.org/10.1016/j.fuel.2024.132149.
- 13. Matveev IB, Serbin SI, Washchilenko NV. New Combined-Cycle Gas Turbine System for Plasma-Assisted Disposal of Sewage Sludge. IEEE Transactions on Plasma Science 2017. https://doi.org/10.1109/TPS.2017.2751961.
- 14. Matveev IB, Washchilenko NV, Serbin SI. Plasma-Assisted Reforming of Natural Gas for GTL: Part III - Gas Turbine Integrated GTL. IEEE Transactions on Plasma Science 2015. https://doi.org/10.1109/TPS.2015.2464236.
- 15. Neupane S, Jatana GS, Lutz TP, Partridge WP. Development of a multi-spectral pyrometry sensor for high-speed transient surface-temperature measurements in combustion-relevant harsh environments. Sensors 2023. https://doi.org/10.3390/s23010105.
- 16. Zheng K, Lu J, Zhao Y, Tao J, Qin Y, Chen Y, Wang W, Sun Q, Wang C, Liang J. Turbine blade three-wavelength radiation temperature measurement method based on reflection error correction. Appl. Sci. 2021. https://doi.org/10.3390/app11093913.
- 17. Zhang M, Tian B, Ma R, Huang M, Liang X, Liu J, Zhang Z. Simulation of high temperature thin film thermocouple on engine blade surface. Mechatronics and Automation Technology 2022. https://doi.org/10.3233/ATDE221166.
- 18. Cherkashyn D, Hubskyi S, Chukhlib V. Telemetry systems for monitoring dynamic loads on transmission system shafts. Bulletin of the National Technical University “KhPI”. Series: Automobile and Tractor Engineering 2022. https://doi.org/10.20998/2078-6840.2022.2.08.
- 19. Zhou H, Rong X, Ma F, Yan Q, She Y, Fan L, Zhao M. Research on real-time fusion technology of range telemetry data. International Journal of Advanced Network, Monitoring and Controls 2022. https://doi.org/10.2478/ijanmc-2022-0010.
- 20. Dixon SL, Hall CA. Fluid Mechanics and Thermodynamics of Turbomachinery, 7th ed. Oxford, UK: Butterworth- Heinemann; 2013. Available: https://research.iaun.ac.ir/pd/s_emami/pdfs/UploadFile_3532.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34ed70f1-91e6-4e5c-96cf-d48c0337f600
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.