Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Non-stationarity of electroencephalogram (EEG) signals greatly affect classifier performance in brain-computer interface (BCI). To overcome this problem we propose an adaptive classifier model known as extended multiclass pooled mean linear discriminant analysis (EMPMLDA). Here, we update the average class pair co-variance matrix along with pooled mean values. Evaluation of classifiers are done on visual evoked cortical potential data-sets. We demonstrate that EMPMLDA can significantly outperform other static classifiers such as MLDA and adaptive classifiers (MPMLDA). Furthermore an optimal update coefficient can be achieved using different datasets.
Czasopismo
Rocznik
Tom
Strony
art. no. 20190020
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- Department of Information Technology, G. H. Raisoni College of Engineering, Nagpur, India, Phone: +(91)9503703225
autor
- Department of Information Technology, G. H. Raisoni College of Engineering, Nagpur, India
autor
- G. H. Raisoni College of Engineering, Nagpur, India
Bibliografia
- [1] Nicolas-Alonso LF, Gomez-Gil J. Brain computer interface. a review. Sensors 2012;12:1211-79.
- [2] Lotte F, Lecuyer A, Arnaldi B. FuRIA: an inverse solution based feature extraction algorithm using fuzzy set theory for brain-computer interfaces. IEEE Trans Signal Proc 2009;57:3253-63.
- [3] Clerc M, Bougrain L, Lotte F. Brain-computer interfaces 1: foundations and methods. USA: ISTE-Wiley, 2016.
- [4] Lotte F, Congedo M. EEG feature extraction. Wiley Online Library. 2016;127-43.
- [5] Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A. A review of classification algorithms for EEG-based braincomputer interfaces: a 10-year update. J Neural Eng. 2018;55(1741-2552/18/031005):1-29.
- [6] Lotte F. Towards usable electroencephalography-based brain-computer interfaces. Habilitation thesis habilitation la diriger des recherches (HDR). University of Bordeaux, 2016.
- [7] Lotte F. A tutorial on EEG signal processing techniques for mental state recognition in brain-computer interfaces. In: Miranda ER, Castet J, editors. Guide to brain-computer music interfacing. London: Springer, 2014.
- [8] Luis F, Corralejo R, Gomez-Pilar J, Álvarez D, Hornero R. Adaptive semi-supervised classification to reduce intersession non-stationarity in multi class motor imagery-based brain computer interfaces. Neurocomputing 2015;159:186-96.
- [9] Llera A, Gómez V, Kappen HJ. Adaptive classification on brain-computer interfaces using reinforcement signals. J Neural Comput Archive 2012;24:2900-23.
- [10] Vidaurre C, Kawanabe M, Von Bunau P, Blankertz B, Muller K. Toward unsupervised adaptation of LDA for brain computer interfaces. IEEE Trans Biomed Eng 2011;58:587-97.
- [11] Xu P, Yang P, Lei X, Yao D. An enhanced probabilistic LDA for multi-class brain computer interface. PLoS One. 2012;1-11.
- [12] Faller J, Scherer R, Costa U, Opisso E, Medina J, Muller-Putz GR. A co-adaptive brain-computer interface for end users with severe motor impairment. PLoS One 2014;9:e101168.
- [13] Llera A, Gomez V, Kappen HJ. Adaptive multi-class classification for brain computer interfaces. Neural Comput 2014;26:1108-27.
- [14] Hitziger S, Clerc M, Saillet S, Benar C, Papadopoulo T. Adaptive waveform learning: a framework for modeling variability in neurophysiological signals. IEEE Trans Signal Proc 2017;65:4324-38.
- [15] Bishop C. Pattern recognition and machine learning. New York: Springer-Verlag, 2007, 978-0-387-31073-2.
- [16] Haykin S. Adaptive filter theory. Englewood Cliffs, NJ: Prentice-Hall, 1996.
- [17] Andreev A, Barachant A, Lotte F, Congedo M. Recreational applications in OpenViBE: brain invaders and use-the-force. In: Clerc M, Bougrain L, Lotte F, editors. Brain-computer interfaces 2: technology and application. France: Wiley-iSTE, 2016:241-58.
- [18] Kotz S, Read C, Balakrishnan N, Vidakovic B, Johnson NL. Encyclopedia of statistical sciences. New York: Wiley, 2004, 9780471150442.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34eb442f-74c4-4ac9-9ae5-a719d7616fff