PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deposition and Retention of Ultrafine Aerosol Particles in the Human Respiratory System. Normal and Pathological Cases

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The particle number concentration in ambient air is dominated by nanometersized particles. Recent epidemiological studies report an association between the presence of nanoparticles in inhaled air at the workplace and acute morbidity and even mortality in the elderly. A theoretical model of deposition of 20 nm particles in the human alveolus was formulated. Gas flow structure and deposition rate were calculated for alveoli with different elastic properties of lung tissue. Data obtained in the paper show increased convective effects and diffusional rate of deposition of nanoparticles tor alveoli with higher stiffness of the alveolar wall. The retention of deposited particles is also higher in these pathological alveoli. Results of our calculations indicate a possibility of existence of a positive loop of coupling in deposition and retention of nanoparticles in the lung with pathological changes.
Słowa kluczowe
Rocznik
Strony
189--207
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Chemical and Process Engineering, Warsaw University of Technology, Poland
autor
  • Department of Chemical and Process Engineering, Warsaw University of Technology, Poland
  • Department of Chemical and Process Engineering, Warsaw University of Technology, Poland
Bibliografia
  • 1.Dahlback, M., Eirefelt, S., Karberg, I.B., & Nebrink, O. (1989), Total deposition of Evans blue in aerosol exposed rats and guinea pigs. Journal of Aerosol Science, 20, 1125-1127.
  • 2.Edwards, D. (1995), The macrotransport at aerosol particles in the lung: Aerosol deposition phenomena. Journal of Aerosol Science, 26, 293-317.
  • 3.Foster, P.P., Pearman, I., & Ramsden, D. (1989). An interspecies comparison of the lung clearance of inhaled monodisprese particles. Journal of Aerosol Science, 20, 189-204.
  • 4.Gallagher, R.M., Simon, B.R., Johnson, P.C., & Gross, J.F. (1982). Finite elements in biomechcinics. New York, NY, USA: Wiley.
  • 5.Gilboa, A., & Silberberg, A. (1976). In situ rheological characterisation of epithelial mucus. Biorheology, 17, 163-167.
  • 6.Gradoń, L., & Orlicki, D. (1990). Deposition of inhaled aerosol particles in a generation of the tracheobronchial tree. Journal of Aerosol Science, 21, 3-14
  • 7.Gradoń, L., & Podgórski, A. (1991). Kinetics of particle retention in the human respiratory tracts. Annals of Occupational Hygiene, 35, 249-262.
  • 8.Gradoń, L., & Podgórski, A. (1995). Displacement of alveolar macrophages in air space of human lung. Medical & Biological Engineering & Computing, 33, 575-581.
  • 9.Gradoń, L., & Podgórski, A. (1996a), Alveolar macrophage (AM) mobility reduction a result of long-term exposure to high dust concentration in inhaled air. International Journal of Occupational Safety and Ergonomics, 2(2), 137-147.
  • 10.Gradoń, L„ & Podgórski, A. (1996b), Deposition of inhaled particles. Discussion of present modelling techniques, Journal of Aerosol Medicine, 9, 343-355.
  • 11.Gradoń, L., & Yu, C.P. (1986). Rate of mucociliary clearance. In J.-M. Aiache (Ed.), Proceedings of ISAM (pp. 201-216). Paris, France: Laboratoir Lavoisier.
  • 12.Kaminsky, D.A, & Irvin, Ch.G. (1997). Lung function in asthma. In P.J. Barns (Ed.) Asthma (pp. 1277-1299). New York, NY, USA: Lippincott-Raven.
  • 13.Macklin, C.C. (1955). Pulmonary sumps, dust accumulation, alveolar fluid and lymph vessels. Acta Anathomica, 23, 1-33
  • 14.McClellan, R.O. (1996). Lung cancer in rats from prolonged exposure to high concentration of particles: Implication to human risk assessment. Inhalation Toxicology, 8, 193-226.
  • 15.Morrow, P.E. (1989). Possible mechanisms to explain dust overloading of lung. Fundamental & Applied Toxicology, 10, 369-378.
  • 16.Napiórkowski, J. (1980). Depozycja aerozoli w pęcherzyku płucnym [Aerosol deposition in pulmonary alveoli]. Unpublished diploma thesis, Politechnika Warszawska, Warsaw, Poland.
  • 17.Nunn, J.F. (1977). Applied respiratory physiology. London, UK: Butterworth.
  • 18.Oberdörster, G., Gelien, R.M., Ferin, J., & Weiss, B. (1995). Association of particulate air pollution and acute mortality. Involvement of ultrafine particles? Inhalation Toxicology, 7, 111-124.
  • 19.Paiva, M. (1972). Computation of the boundary conditions for diffusion in the human lung. Computers and Biomedical Research, 5, 585-595.
  • 20.Podgórski, A., & Gradoń, L. (1991). Function of the pulmonary surfactant in the clearance of respiratory bronchioles. Chemical Engineering Communication, 110, 146-162.
  • 21.Podgórski, A., & Gradoń, L. (1993). An improved mathematical model of hydrodynamical self-clearance of pulmonary alveoli. Annals of Occupational Hygiene, 37, 347-365.
  • 22.Simon, B.R., Kaufmann, M.V., McAfee, M.A., & Baldwin, A.L. (1993). Finite element models for arterial wall mechanics. Journal of Biomechanical Engineering, 115, 489-496.
  • 23.Sleigh, M.A. (1981). Ciliary function in mucus transport. Chest, 80, 791-795.
  • 24.Weibel, R. (1963). Morphometry of the human lung. Berlin, Germany: Springer.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34e8c0af-4a47-4ca5-b91b-7213448ee92c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.