PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected properties of biodegradable material produced from thermoplastic starch with by-products of food industry addition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work extrusion process were used to create thermoplastic starch and to mix obtained starch with linen, quince and apple pomace at the same time. Obtained starch beads were formed in shapes. In experimental material was determined thermal conductivity, water absorption and the solubility in water. It is possible to get the biodegradable material produced from thermoplastic starch with an addition of fruit pomace. Adding pomace and glycerine to the biodegradable material made from starch change of susceptibility on water action. In the case of materials containing pomace, glycerine addition decreases the susceptibility on water action compared to the material manufactured with pomace addition but without glycerine. In the material containing pomace, glycerine addition caused the increase of the thermal insulation time compared to the material with pomace but no glycerine in it.
Rocznik
Strony
51--55
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Wrocław University of Environmental and Life Sciences, The Faculty of Food Science, ul. Chełmońskiego 37, 51-630Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences, The Faculty of Food Science, ul. Chełmońskiego 37, 51-630Wrocław, Poland
autor
  • Wrocław University of Environmental and Life Sciences, The Faculty of Food Science, ul. Chełmońskiego 37, 51-630Wrocław, Poland
autor
  • Wrocław University of Environmental and Life Sciences, The Faculty of Food Science, ul. Chełmońskiego 37, 51-630Wrocław, Poland
Bibliografia
  • 1. Błędzki, A.K., Gorący, K. & Urbaniak, M. (2012). Possibilities of recycling and utylisation of the polymeric materials and composite products (in Polish). Polimery 57, 9.
  • 2. Rahmad, A.R., Rahman, W.A., Sin, L.T. & Yussuf, A.A. (2009). Approaches to improve compatibility of starch filled polymer system: A review. Mater. Sci. Eng. C, 29, 237–2377. DOI: 10.1016/j.msec.2009.06.009.
  • 3. Kim, M. (2003). Evaluation of degradability of hydroxypropylated potato starch/polyethylene blend films. Carbohyd. Polym. 54, 173–181. DOI: 10.1016/S0144-8617(03)00169-3.
  • 4. Bertuzzi, M.A., Armada, M. & Gottifredi, J.C. (2007). Physicochemical characterization of starch based films. J. Food Eng. 82, 17–25. DOI: 10.1016/j.jfoodeng.2006.12.016.
  • 5. Saberi, B., Thakur, R., Vuong, Q.V., Chockchaisawasdee, S., Golding, J.B., Scarlett, C.J. & Stathopoulos, C.E. (2016). Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Ind. Crip. Prod. 86, 342–352. DOI: 10.1016/j.indcrop.2016.04.015.
  • 6. Carvalho, A.J.F., Curvelo, A.A.S. & Agnelli, J.A.M. (2001). A first insight on composites of thermoplastic starch and kaolin. Carbohyd. Polym. 45, 189–194. DOI: 10.1016/S0144-8617(00)00315-5.
  • 7. Wattanakornsiri, A., Pachana, K., Kaewpirom, S., Traina. M. & Migliaresi, C. (2012). Preparation and Properties of Green Composites Based on Tapioca Starch and Differently Recycled Paper Cellulose Fiber. J. Polym. Environ. 20, 801–809. DOI: 10.1007/s10924-012-0494-6.
  • 8. Vasconez, M.B., Flores, S.K., Campos, C.A., Alvarado, J. & Gerschenson, L.N. (2009). Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings. Food Res. Int. 42, 762–769. DOI: 42 762–769. 10.1016/j.foodres.2009.02.026.
  • 9. Świerz-Motysia, B. & Rajkiewicz, M. & Mikołajska, A. (2007). Characterization of polimer compositions containing thermoplastic starch (in Polish). Elastomery 2(11), 10–20.
  • 10. Jimenez, A., Fabra, M.J., Talens, P. & Chiralt, A. (2012). Edible and Biodegradable Starch Films: A Review. Food Bioprocess. Technol. 5, 2058–2076. DOI: 10.1007/s11947-012-0835-4.
  • 11. Gupta, A.P., Kumar, V. & Sharma, M. (2010). Formulation and Characterization of Biodegradable Packaging Film Derived from Potato Starch & LDPE Grafted with Maleic Anhydride-LDPE Composition. J. Polym. Environ. 18, 484–491. DOI: 10.1007/s10924-010-0213-0.
  • 12. Nawirska, A. & Kwaśniewska, M. (2005). Dietary fibre fractions from fruit and vegetable processing waste. Food Chem. 91(2), 221–225. DOI: 10.1016/j.foodchem.2003.10.005.
  • 13. Nawirska, A. (2005). Binding of heavy metals to pomace fibers. Food Chem. 90(3), 395–400. DOI: 10.1016/j.foodchem.2004.04.009.
  • 14. Zdybel, E., Tomaszewska-Ciosk, E., Główczyńska, G. & Drożdż, W. (2014). The heat insulating properties of potato starch extruded with addition of chosen by-products of food industry. Pol. J. Chem. Technol. 16(4) 28–32. DOI: 10.2478/pjct-2014-0065.
  • 15. Zdybel, E. & Leszczyński, W. (2004). The properties of plastic made from synthetic polymers and acetylated starch. (in Polish). Zesz. Probl. Postęp. Nauk Rol. 500, 569–579
  • 16. Tomaszewska-Ciosk, E., Golachowski, A., Drożdż, W., Boruczkowski, T., Boruczkowska, H. & Zdybel, E. (2012). Selected Properties of Single- and Double-Extruded Potato Starch. Pol. J. Food Nutr. Sci. 62(3), 171–177. DOI: 10.2478/v10222-011-0034-4.
  • 17. Tomaszewska-Ciosk, E., Boruczkowski, T., Golachowski, A., Drożdż, W. & Boruczkowska, H. (2013). Effect of ethanol addition on physical properties of extruded starch. Starch/Stärke 65(3–4), 244–252. DOI: 10.1002/star.201200066.
  • 18. Zięba, T., Kapelko, M., Gryszkin, A. & Brzozowska, M. (2010). Physical and chemical modification of potato starch to obtain resistant starch preparations. Pol. J. Food Nutr. Sci. 60(2), 153–157.
  • 19. Kapelko, M. & Zięba T. (2007). Properties of extruded potato starch modified with glycin (in Polish). Żyw. Nauka. Technol. Jakość 54, 21–30.
  • 20. Kita, A. & Popiela-Kukuś, K. (2010). Effect of flaxseed pomace addition on selected properties of fried potato snacks (in Polish). Acta Agrophys. 16(1), 69–77.
  • 21. Figuerola, F., Hurtado, M.L., Estevez, A.M., Chiffelle I. & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel aspotential fibre sources for food enrichment. Food Chem. 91, 395–401. DOI: 10.1016/j.foodchem.2004.04.036.
  • 22. Sudha, M.L., Baskaran, V. & Leelavathi K. (2007) Apple pomace as a source of dietary fiber and polyphenols and its effect on the reological characteristics and cake making. Food Chem. 104, 686–692. DOI: 10.1016/j.foodchem.2006.12.016.
  • 23. Zhang, Y. & Thompson, M. & Liu, Q. (2011). The effect of pea fiber and potato pulp on thermal property, surface tension, and hydrophilicity of extruded starch thermoplastics. Carbohyd. Polym. 86, 700–707. DOI: 10.1016/j.carbpol.2011.05.009.
  • 24. Jiménez, A., Fabra, M.J., Talens, P. & Chiralt, A. (2012). Edible and Biodegradable Starch Films: A Review. Food Bioprocess. Technol. 5, 2058–2076. DOI: 10.1007/s11947-012-0835-4.
  • 25. Lu, D.R., Xiao, C.M. & Xu S.J. (2009). Starch-based completely biodegradable polymers materials. Express Polym. Lett. 3, 6, 366–375. DOI: 10.3144/expresspolymlett.2009.46.
  • 26. Cyras, V.P., Manfredi, L.B., Ton-That, M.T. & Vázquez, A. (2008). Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohyd. Polym. 73, 55–63. DOI: 10.1016/j.carbpol.2007.11.014.
  • 27. Mali, S., Sakanaka, L.S., Yamashita, F. & Grossmann, M.V.E. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohyd. Polym. 60, 283–289. DOI: 10.1016/j.carbpol.2005.01.003.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34df82cb-8335-4ec5-8597-76823b68c1cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.