Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Phytoremediation is a promising sustainable approach for the remediation of soil contaminated with inorganic and organic pollutants. In the lands affected by petroleum-derived compounds, their massive toxicity towards the plants, however, hinders the efficacy of the phytoremediation process. Hence, adopting a green approach to enhance phytoremediation is highly recommended and desirable. Here, sugarcane bagasse (SCB) was used as a bulking agent enhancing the hyperaccumulation of heavy metals chromium (Cr) and nickel (Ni) by sunflower plants from 0.5%, 2.5%, and 5% oil-contaminated soil. Accumulation of Cr and Ni was observed higher in roots than shoots. The bioconcentration factor (BCF) of Cr and Ni was higher in soil amended with SCB than that without amended. The highest rate of Ni and Cr uptake was also noticed in all treatments amended with the bulking agent except in the case of 0.5% oil-contaminated soil without SCB. Overall, the phytoremediation of oil-contaminated soil is most effective when it is amended with SCB as a bulking agent which provides water and air well to plants, improving plant growth and then increasing phytoaccumulation of heavy metals.
Wydawca
Czasopismo
Rocznik
Tom
Strony
142--156
Opis fizyczny
Bibliogr. 29 poz., 1 il. kolor., wykr.
Twórcy
autor
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
autor
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
autor
- Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
Bibliografia
- [1] Ahmad, J.; Marsidi, N.; Sheikh Abdullah, S.R.; Hasan, H.A.; Othman, A.R.; Ismail, N.I.; Kurniawan, S. B. Integrating Phytoremediation and Mycoremediation with Biosurfactant-Producing Fungi for Hydrocarbon Removal and the Potential Production of Secondary Resources. Chemosphere 2024, 349, 140881. DOI: 10.1016/j.chemosphere.2023.140881.
- [2] Warmate, A.G.; Ideriah, T.J. K.; Tamunobereton, I.T.; Udonam Inyang, U.E.; Ibaraye, T. Concentrations of Heavy Metals in Soil and Water Receiving Used Engine Oil in Port Harcourt, Nigeria. J. Ecol. Nat. Env. 2011, 3(2), 54-57.
- [3] Truu, J.; Truu, M.; Espenberg, M.; Nõlvak, H.; Juhanson, J. Phytoremediation And Plant-Assisted Bioremediation In Soil And Treatment Wetlands: A Review. Open Biotechnol. J. 2015, 9(1), 85-92. DOI: 10.2174/1874070720150430E009.
- [4] Moses, K.K.; Aliyu, A.; Hamza, A.; Mohammed-Dabo, I.A. Recycling of Waste Lubricating Oil: A Review of the Recycling Technologies with a Focus on Catalytic Cracking, Techno-Economic and Life Cycle Assessments. J Environ. Chem. Eng. 2023, 11(6), 111273. DOI: 10.1016/j.jece.2023.111273.
- [5] Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T. Bin; Nainu, F.; Khusro, A.; Idris, A. M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; Simal-Gandara, J. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud. Univ. Sci. 2022, 34(3), 101865. DOI: 10.1016/j.jksus.2022.101865.
- [6] Agarry, S.E.; Ogunleye, O.O. Box-Behnken Design Application to Study Enhanced Bioremediation of Soil Artificially Contaminated with Spent Engine Oil Using Biostimulation Strategy. Int. J. Energy Env. Eng. 2012, 3(1), 31. DOI: 10.1186/2251-6832-3-31.
- [7] Djellabi, R.; Su,P.; Elimian, E.A.; Poliukhova, V.; Nouacer, S.; Abdelhafeez, I.A.; Abderrahim, N.; Aboagye, D.; Andhalkar, V. V.; Nabgan, W.; Rtimi, S.; Contreras, S. Advances in Photocatalytic Reduction of Hexavalent Chromium: From Fundamental Concepts to Materials Design and Technology Challenges. J. Water Proc. Eng. 2022, 50, 103301. DOI: 10.1016/j.jwpe.2022.103301.
- [8] Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, Its Adverse Health Effects & Oxidative Stress. Indian Journal of Medical Research 2008, 128, 412-425.
- [9] Mai, X.; Tang, J.; Tang, J.; Zhu, X.; Yang, Z.; Liu, X.; Zhuang, X.; Feng, G.; Tang, L. Research Progress on the Environmental Risk Assessment and Remediation Technologies of Heavy Metal Pollution in Agricultural Soil. J. Env. Sci. 2025, 149, 1-20. DOI: 10.1016/j.jes.2024.01.045.
- [10] Arora, D.; Arora, A.; Panghal, V.; Singh, A.; Bala, R.; Kumari, S.; Kumar, S. Unleashing the Feasibility of Nanotechnology in Phytoremediation of Heavy Metal-Contaminated Soil: A Critical Review Towards Sustainable Approach. Water Air Soil Pollut. 2024, 235(57), 1-20. DOI: 10.1007/s11270-023-06874-9.
- [11] Abioye, O.P.; Agamuthu, P.; Abdul Aziz, A.R. Phytotreatment of Soil Contaminated with Used Lubricating Oil Using Hibiscus Cannabinus. Biodegradation 2012, 23(2), 277-286. DOI: 10.1007/s10532-011-9506-9.
- [12] Jiang, J.; Wang, S.; Wang, L.; Lv, Q.; Yang, Y.; Chen, K.; Liu, L.; Wang, X. The Improvement of Pore Characteristics, Remediation Efficiency, and Biotoxicity of Petroleum-Contaminated Soil with the Addition of Bulking Agent on Field-Scale Biopile Treatment. J. Soils Sediments 2021, 21(8), 2855-2864. DOI: 10.1007/s11368-021-02992-1.
- [13] Alves, D.; Villar, I.; Mato, S. Joint Application of Biological Techniques for the Remediation of Waste Contaminated with Hydrocarbons. Waste Biomass Valorization 2023, 14(3), 977-987. DOI: 10.1007/s12649-022-01899-3.
- [14] Shahbazi, K.; Beheshti, M. Comparison of Three Methods for Measuring Heavy Metals in Calcareous Soils of Iran. SN Appl. Sci. 2019, 1(12), 1541. DOI: 10.1007/s42452-019-1578-x.
- [15] Davidson, C. M. Methods for the Determination of Heavy Metals and Metalloids in Soils. In Heavy Metals in Soils; Environmental Pollution, Springer, Dordrecht 2013, 22, 97-140.
- [16] Agamuthu, P.; Dadrasnia, A. Dynamics Phytoremediation of Zn and Diesel Fuel in Co-Contaminated Soil Using Biowastes. J. Bioremediat. Biodegrad. 2013, 01(S4), 1-5. DOI: 10.4172/2155-6199.s4-006.
- [17] Abioye, P.O.; Abdul Aziz, A.; Agamuthu, P. Enhanced Biodegradation of Used Engine Oil in Soil Amended with Organic Wastes. Water Air Soil. Pollut. 2010, 209, 173-179. DOI: 10.1007/s11270-009-0189-3.
- [18] Davies, F.T.; Puryear, J.D.; Newton, R.J.; Egilla, J.N.; Grossi, J.A.S. Mycorrhizal Fungi Enhance Accumulation and Tolerance of Chromium in Sunflower (Helianthus Annuus). J. Plant Physiol. 2001, 158, 777-786.
- [19] Waseem, M.; Khilji, S. A.; Tariq, S.; Jamal, A.; Alomrani, S. O.; Javed, T. Phytoremediation of Heavy Metals from Industrially Contaminated Soil Using Sunflower (Helianthus Annus L.) by Inoculation of Two Indigenous Bacteria. Plant Stress 2024, 11, 100297. DOI: 10.1016/j.stress.2023.100297.
- [20] Kaonda, M.K.M.; Chileshe, K. Assessment of Sunflower (Helianthus Annuus L.) for Phytoremediation of Heavy Metal Polluted Mine Tailings—A Case Study of Nampundwe Mine Tailings Dam, Zambia. J. Environ. Prot. (Irvine, Calif) 2023, 14(7), 481-492. DOI: 10.4236/jep.2023.147028.
- [21] Ogungbile, P.O.; Ajibare, A.O.; Enochoghene, A E.; Ogunbode, T.O.; Omotayo, O.E. O.; Ekanade, C.T.; Sridhar, M.K.C.; Akande, J.A. Phytoremediation with Sunflower (Helionthus Annus) and Its Capacity for Cadmium Removal in Contaminated Soils. Tropic. Aq. Soil Pollut. 2024, 4(1), 1-9. DOI: 10.53623/tasp.v4i1.343.
- [22] Nemati, B.; Baneshi, M.M.; Akbari, H.; Dehghani, R.; Mostafaii, G. Phytoremediation of Pollutants in Oil-Contaminated Soils by Alhagi Camelorum: Evaluation and Modeling. Sci. Rep. 2024, 14(1), 5502. DOI: 10.1038/s41598-024-56214-y.
- [23] Molina-Barahona, L.; Rodríguez-Vázquez, R.; Hernández-Velasco, M.; Vega-Jarquín, C.; Zapata-Pérez, O.; Mendoza-Cantú, A.; Albores, A. Diesel Removal from Contaminated Soils by Biostimulation and Supplementation with Crop Residues. Appl. Soil Ecoll. 2004, 27(2), 165-175. DOI: 10.1016/j.apsoil.2004.04.002.
- [24] Han, L.; Gu, H.; Lu, W.; Li, H.; Peng, W. xi; Ling Ma, N.; Lam, S. S.; Sonne, C. Progress in Phytoremediation of Chromium from the Environment. Chemosphere 2023, 344, 140307. DOI: 10.1016/j.chemosphere.2023.140307.
- [25] Adamidis, G.C.; Aloupi, M.; Kazakou, E.; Dimitrakopoulos, P. G. Intra-Specific Variation in Ni Tolerance, Accumulation and Translocation Patterns in the Ni-Hyperaccumulator Alyssum Lesbiacum. Chemosphere 2014, 95, 496-502. DOI: 10.1016/j.chemosphere.2013.09.106.
- [26] Deng, T.H.B.; van der Ent, A.; Tang, Y.T.; Sterckeman, T.; Echevarria, G.; Morel, J.L.; Qiu, R.L. Nickel Hyperaccumulation Mechanisms: A Review on the Current State of Knowledge. Plant Soil 2018, 423, 1-11. DOI: 10.1007/s11104-017-3539-8.
- [27] Rhykerd, R.L.; Crews, B.; McInnes, K.J.; Weaver, R. W. Impact of Bulking Agents, Forced Aeration, and Tillage on Remediation of Oil-Contaminated Soil. Bioresour. Technol. 1999, 67 (3), 279-285. DOI: 10.1016/S0960-8524(98)00114-X.
- [28] Olatunji, O.A.; Akinpelumi, B.E.; Olatunji, O.A. Effects of Sawdust Soil Amendment on the Soil, Growth and Yield of Solanum Esculentum Linn. in Waste Engine Oil-Polluted Soil. Sci. Cold. Arid. Reg. 2015, 7(2), 128-136. DOI: 10.3724/SP.J.1226.2015.00128.
- [29] Anoliefo, G.O.; Vwioko, D.E. Effect of Spent Lubricating Oil on the Growth of Capsicum Annum L. and Lycopersicon Esculentum Miller. Environmental Pollution 1995, 88, 361-364.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34de9c61-bdb6-4551-89b3-cd0ab4f5438f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.