PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the groundwater quality index through machine learning in Western Middle Chelif plain in North Algeria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water quality monitoring and assessment has been one of the world’s major concerns in recent decades. This study examines the performance of three approaches based on the integration of machine learning and feature extraction techniques to improve water quality prediction in the Western Middle Chelif plain in Algeria during 2014–2018. The most dominant Water Quality Index parameters that were extracted by neuro-sensitivity analysis (NSA) and principal component analysis (PCA) techniques were used in the multilayer perceptron neural network, support vector regression (SVR) and decision tree regression models. Various combinations of input data were studied and evaluated in terms of prediction performance, using statistical criteria and graphical comparisons. According to the results, the MLPNN1 model with eight input parameters gave the highest performance for both training and validation phases (R=0.98/0.95, NSE=0.96/0.88, RMSE=11.20/15.03, MAE=7.89/10.22 and GA=1.34) when compared with the multiple linear regression, TDR and SVR models. Generally, the prediction performance of models integrated with NSA approaches is significantly improved and outperforms models coupled with the PCA dimensionality reduction method.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1797--1814
Opis fizyczny
Bibliogr. 95 poz.
Twórcy
  • Department of Hydraulic, Civil Engineering and Architecture Faculty, University of Hassiba Benbouali, Chlef, Algeria
  • Vegetal Chemistry-Water-Energy Laboratory (LCV2E), Chlef, Algeria
autor
  • UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh, Giford, Wallingford, Oxfordshire OX 10 8 BB, UK
Bibliografia
  • 1. Adnan RM, Yuan X, Kisi O, Yuan Y (2017) Streamflow forecasting using artificial neural network and support Vector machine models. Am Sci Res J Eng Technol Sci (ASRJETS) 29:286–294
  • 2. Ahmed U, Mumtaz R, Anwar H, Shah AA, Rabia Irfan R, García-Nieto J (2019) Efficient water quality prediction using supervised machine learning. Water 11(11):2210. https://doi.org/10.3390/w11112210
  • 3. Ali A, Gravino C (2022) Evaluating the impact of feature selection consistency in software prediction Sci of Comput. Program 213:102715. https://doi.org/10.1016/j.scico.2021.102715
  • 4. Allahbakhshian-Farsani P, Vafakhah M, Khosravi-Farsani H, Hertig E (2020) Regional Flood Frequency Analysis Through Some Machine Learning Models in Semi-arid Regions. Water Resour Manage 34:2887–2909. https://doi.org/10.1007/s11269-020-02589-2
  • 5. ANRH (2006) Assessment of the Water Resources of the Middle Cheliff Alluvial Aquifer. Agence Nationale des Ressources Hydrauliques, Algeria, Internal Report
  • 6. Asadollah SBHS, Sharafati A, Motta D, Yaseen ZM (2021) River water quality index prediction and uncertainty analysis: a comparative study of machine learning models. J Environ Chem Eng 9(1):104599. https://doi.org/10.1016/j.jece.2020.104599
  • 7. Azam M, Arshad A, Aslam M, Gulzar S (2019) Application of classification methods to analyze chemicals in drinking water quality. Accredi Qual Assur 24:227–235. https://doi.org/10.1007/s00769-018-01369-1
  • 8. Azimi H, Hossein Bonakdari H, Ebtehaj I (2017) Sensitivity analysis of the factors affecting the discharge capacity of side weirs in trapezoidal channels using extreme learning machines. Flow Meas Instrum. 54:216–223. https://doi.org/10.1016/2Fj.flowmeasinst.2017.02.005
  • 9. Azizpor A, Izadbakhsh MA, Shabanlou S, Yosefvand F, Rajabi A (2021) Estimation of water level fluctuations in groundwater through a Hybrid Learning Machine. Groundw Sustain Dev 15:100687. https://doi.org/10.1016/j.gsd.2021.100687
  • 10. Azrour M, Mabrouki J, Fattah G, Guezzaz A, Aziz F (2021) Machine learning algorithms for efficient water quality prediction. Model Earth Syst Environ. https://doi.org/10.1007/s40808-021-01266-6
  • 11. Barzegar R, Aalami MT, Adamowski J (2020) Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model. Stoch Environ Res Risk Assess 34:415–433. https://doi.org/10.1007/s00477-020-01776-2
  • 12. Bedi S, Samal A, Ray C, Snow D (2020) Comparative evaluation of machine learning models for groundwater quality assessment. Environ Monit Assess 192:776. https://doi.org/10.1007/s10661-020-08695-3
  • 13. Belkhiri L, Mouni L (2012) Hydrochemical analysis and evaluation of groundwater quality in El Eulma area, Algeria. Appl Water Sci 2:127–133. https://doi.org/10.1007/s13201-012-0033-6
  • 14. Bhushan B, Singh M, Hage Y (2012) Identification and control using MLP, Elman, NARXSP and radial basis function networks: a comparative analysis. Artif Intell Rev 37:133–156. https://doi.org/10.1007/s10462-011-9223-0
  • 15. Bouderbala A (2017) Assessment of groundwater quality and its suitability for domestic and agricultural uses in Low-Isser plain, Boumedres. Algeria Arab J Geosci 10:333. https://doi.org/10.1007/s12517-017-3119-5
  • 16. Bouderbala A (2019) The impact of climate change on groundwater resources in coastal aquifers: case of the alluvial aquifer of Mitidja in Algeria. Environ Earth Sci 78:698. https://doi.org/10.1007/s12665-019-8702-5
  • 17. Bouteraa O, Laignel B, Mebarki A, Bouaicha F, Nouaceur Z (2019) Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): a case of study in the Boumerzoug-El Khroub valley of Northeast Algeria. Acta Geochim 38:796–814. https://doi.org/10.1007/s11631-019-00329-x
  • 18. C.G.G (1972) Compagnie Générale de Géophysique. Geophysical prospecting by electric probing of the western middle Cheliff (D.E.M.R.H). Internal Report; 34 p (in French)
  • 19. Cao LJ, Chua KS, Chong WK, Lee HP, Gu QM (2003) A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55:321–336. https://doi.org/10.1016/S0925-2312(03)00433-8
  • 20. Cao M, Alkayem NF, Pan L, Drahomír Novák D (2016) Advanced methods in neural networks-based sensitivity analysis with their applications in civil engineering. Artif Neural Netw - Models Appl Books Intech. https://doi.org/10.5772/64026
  • 21. Cao MS, Pan LX, Gao YF, Novák D, Ding ZC, Lehký D, Li XL (2017) Neural network ensemble-based parameter sensitivity analysis in civil engineering systems. Neural Comput Applic 28:1583–1590. https://doi.org/10.1007/s00521-015-2132-4
  • 22. Chakraborty T, Chakraborty AK, Mansoor Z (2019) A hybrid regression model for water quality prediction. Opsearch 56:1167–1178. https://doi.org/10.1007/s12597-019-00386-z
  • 23. Cheng M, Fang F, Kinouchi T, Navon I, Pain C (2020) Long lead-time daily and monthly streamflow forecasting using machine learning methods. J Hydrol 590:125376. https://doi.org/10.1016/j.jhydrol.2020.125376
  • 24. Dehghani R, Torabi Poudeh H, Younesi H, Shahinejad B (2020) Daily streamflow prediction using support vector machine-artificial flora (SVM-AF) hybrid model. Acta Geophys 68:1763–1778. https://doi.org/10.1007/s11600-020-00472-7
  • 25. Deo RC, Şahin M (2015) Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia. Atmos Res 161–162:65–81. https://doi.org/10.1016/j.atmosres.2015.03.018
  • 26. Dilmi S, Ladjal M (2021) A novel approach for water quality classification based on the integration of deep learning and feature extraction techniques. Chemo Intell Lab Syst 214:104329. https://doi.org/10.1016/j.chemolab.2021.104329
  • 27. Ebadati N, Hooshmandzadeh M (2019) Water quality assessment of river using RBF and MLP methods of artificial network analysis (case study: Karoon River Southwest of Iran). Environ Earth Sci 78:551. https://doi.org/10.1007/s12665-019-8472-0
  • 28. Ebert N, Goos JC, Kirschbaum F, Yildiz E, Koch T (2020) Methods of sensitivity analysis in model-based calibration. Automot Engine Technol 5:45–56. https://doi.org/10.1007/s41104-020-00058-x
  • 29. El Baba M, Kayastha P, Huysmans M, De Smedt F (2020) Evaluation of the groundwater quality using the water quality index and geostatistical analysis in the dier al-balah governorate, gaza strip. Palestine Water 12:262. https://doi.org/10.3390/w12010262
  • 30. El Bilali A, Taleb A, Youssef Brouziyne Y (2021) Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agric Water Manage 245:106625. https://doi.org/10.1016/j.agwat.2020.106625
  • 31. Elaid M, Hind M, Abdelmadjid B, Mohamed M (2021) Contribution of hydrogeochemical and isotopic tools to the management of upper and middle Cheliff Aquifers. J Earth Sci 31:993–1006. https://doi.org/10.1007/s12583-020-1293-y
  • 32. Elmeddahi Y, Issaadi A, Mahmoudi H, Tahar Abbes M, Goossen MFA (2014) Effect of climate change on water resources of the Algerian Middle Cheliff basin. Desalin Water Treat 52:2073–2081. https://doi.org/10.1080/19443994.2013.831777
  • 33. Elmeddahi Y, Mahmoudi H, Issaadi A, Goosen GMFA, Ragab R (2016) Evaluating the effects of climate change and variability on water resources: a case study of the Cheliff Basin in Algeria. AJEAS 9:835–845. https://doi.org/10.3844/ajeassp.2016.835.845
  • 34. Fahrmeir L, Kneib T, Lang S, Marx B (2013) Regression. Springer, Berlin. https://doi.org/10.1007/978-3-642-34333-9
  • 35. Gazzaz NM, Yusoff MK, Aris AZ, Juahir H, Ramli MF (2012) Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Mar Pollut Bull 64:2409–2420. https://doi.org/10.1016/j.marpolbul.2012.08.005
  • 36. Gevrey M, Dimopoulos I, Lek S (2003) Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Model 160:249–264. https://doi.org/10.1016/S0304-3800(02)00257-0
  • 37. Granata F, Papirio S, Esposito G, Gargano R, De Marinis G (2017) Machine learning algorithms for the forecasting of wastewater quality indicators. Water 9:105. https://doi.org/10.3390/w9020105
  • 38. Gulgundi MS, Shetty A (2018) Groundwater quality assessment of urban bengaluru using multivariate statistical techniques. Appl Water Sci 8:1–15. https://doi.org/10.1007/s13201-018-0684-z
  • 39. Gülmez Y, Özmen G (2022) Effect of exhaust backpressure on performance of a diesel engine: neural network based sensitivity analysis. Int J Automot Technol 23:215–223. https://doi.org/10.1007/s12239-022-0018-x
  • 40. Gupta AN, Kumar D, Singh A (2021) Evaluation of water quality based on a machine learning algorithm and water quality index for mid gangetic region (South Bihar plain), India. J Geol Soc India 97:1063–1072. https://doi.org/10.1007/s12594-021-1821-0
  • 41. Guzman SM, Paz JO, Tagert MLM, Mercer AE (2019) Evaluation of seasonally classified inputs for the prediction of daily groundwater levels: NARX networks vs support vector machines. Environ Model Assess 24:223–234. https://doi.org/10.1007/s10666-018-9639-x
  • 42. Hagen JS, Leblois E, Lawrence D, Solomatine D, Sorteberg A (2021) Identifying major drivers of daily streamflow from large-scale atmospheric circulation with machine learning. J Hydrol 596:126086. https://doi.org/10.1016/j.jhydrol.2021.126086
  • 43. Haghiabi AH, Nasrolahi AH, Parsaie A (2018) Water quality prediction using machine learning methods. Water Qual Res J 53:3–13. https://doi.org/10.2166/wqrj.2018.025
  • 44. Hamlat A, Guidoum A (2018) Assessment of groundwater quality in a semiarid region of Northwestern Algeria using water quality index (WQI). Appl Water Sci 8:220. https://doi.org/10.1007/s13201-018-0863-y
  • 45. Ibn Ali Z, Frika Y, Ghzel L, Zairi M (2017) Hydrogeochemical characteristics prediction using multiple linear regression: case study on unconfined aquifer in northeastern Tunisia. Arab J Geosci 10:382. https://doi.org/10.1007/s12517-017-3170-2
  • 46. Isiyaka HA, Mustapha A, Juahir H, Phil-Eze P (2019) Water quality modelling using artificial neural network and multivariate statistical techniques. Model Earth Syst Environ 5:583–593. https://doi.org/10.1007/s40808-018-0551-9
  • 47. Islam Khan SM, Islam N, Uddin J, Islam S, Nasir MK (2021) Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. J King Saud Univ - Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2021.06.003
  • 48. Judran NH, Kumar A (2020) valuation of water quality of Al-Gharraf River using the water quality index (WQI). Model Earth Sys Environ 6:1581–1588. https://doi.org/10.1007/s40808-020-00775-0
  • 49. Kadam A, Wagh V, Muley A, Umrikar B, Sankhua R (2019) Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India. Model Earth Sys Environ 12:951–962. https://doi.org/10.1007/s40808-019-00581-3
  • 50. Kagnicioglu CH, Mogol M (2014) Implementation of CHAID algorithm: a hotel case. Int J Res Bus Soc Sci 3:42–51. https://doi.org/10.20525/ijrbs.v3i4.116
  • 51. Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187–200. https://doi.org/10.1007/BF02289233
  • 52. Kass VG (1980) An exploratory technique for investigating large quantities of categorical data. Appl Statist 29:119–127. https://doi.org/10.2307/2986296
  • 53. Keskin TE, Dügenci M, Kaçaroglu F (2015) Prediction of water pollution sources using artificial neural networks in the study Areas of Sivas, Karabu¨kfand Bartin (Turkey). Environ Earth Sci 73:5333–53470. https://doi.org/10.1007/s12665-014-3784-6
  • 54. Keskin TE, Özler E, Sander E, Dügenci M, Ahmed MY (2020) Prediction of electrical conductivity using ANN and MLR: a case study from Turkey. Acta Geophys 68:811–820. https://doi.org/10.1007/s11600-020-00424-1
  • 55. Khosravi R, Eslami H, Almodaresi SA, Heidari M, Fallahzadeh RA, Taghavi M, Khodadadi M, Peirovi R (2017) Use of geographic information system and water quality index to assess groundwater quality for drinking purpose in Birjand City. Iran Desalin Water Treat 67:74–83. https://doi.org/10.5004/dwt.2017.20458
  • 56. Kouadri S, Kateb S, Zegait R (2021a) Spatial and temporal model for WQI prediction based on backpropagation neural network, application on EL MERK region (Algerian southeast). J Saudi Soc Agric Sci 20:324–336. https://doi.org/10.1016/j.jssas.2021.03.004
  • 57. Kouadri S, Elbeltagi A, Islam ARMT, Kateb S (2021b) Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast). Appl Water Sci 11:190. https://doi.org/10.1007/s13201-021-01528-9
  • 58. Kowalski PA, Kusy M (2018) Sensitivity analysis for probabilistic neural network structure reduction. IEEE Trans Neural Netw Learn Syst 29:1919–1932. https://doi.org/10.1109/TNNLS.2017.2688482
  • 59. Kumar DL, Sateesh K, Saxena PR, Satyanarayana E, Edukondal A (2015) Assessment of groundwater quality and its suitability for drinking and irrigation purpose in Maheshwaram area, Ranga Reddy District, Telangana State. India J Environ Res Develop 9:523–529
  • 60. Kumar A, Ramsankaran R, Brocca L, Munoz-Arriola F (2021) A simple machine learning approach to model real-time streamflow using satellite inputs: demonstration in a data scarce catchment. J Hydrol 595:126046. https://doi.org/10.1016/j.jhydrol.2021.126046
  • 61. Liu M, Lu J (2014) Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river. Environ Sci Pollut Res 21:11036–11053. https://doi.org/10.1007/s11356-014-3046-x
  • 62. Malekzadeh M, Kardar S, Saeb K, Shabanlou S, Taghavi L (2019) A novel approach for prediction of monthly ground water level using a hybrid wavelet and non-tuned self-adaptive machine learning model. Water Resour Manage 33:1609–1628. https://doi.org/10.1007/s11269-019-2193-8
  • 63. Milanovic M, Stamenkovic M (2016) CHAID decision tree: methodological frame and application. Economic Themes 54:563–586. https://doi.org/10.1515/ethemes-2016-0029
  • 64. Mohanty S, Jha MK, Raul SK, Panda RK, Sudheer KP (2015) Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. Water Resour Manag 29:5521–5532. https://doi.org/10.1007/s11269-015-1132-6
  • 65. Montaño JJ, Palmer A (2003) Numeric sensitivity analysis applied to feedforward neural networks. Neural Comput Applic 12:119–125. https://doi.org/10.1007/s00521-003-0377-9
  • 66. Mosavi A, Ozturk P, Chau KW (2018) Flood prediction using machine learning models: literature review. Water 10:1536. https://doi.org/10.3390/w10111536
  • 67. Norallahi M, Seyed Kaboli H (2021) Urban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB. Nat Hazards 106:119–137. https://doi.org/10.1007/s11069-020-04453-3
  • 68. Pan C, Ng KTW, Richter A (2019) An integrated multivariate statistical approach for the evaluation of spatial variations in groundwater quality near an unlined landfill. Environ Sci Pollut Res Int 26:5724–5737. https://doi.org/10.1007/s11356-018-3967-x
  • 69. Parvinizadeh S, Zakermoshfegh M, Shakiba M (2021) A simple and efficient rainfall–runoff model based on supervised brain emotional learning. Neural Comput Applic. https://doi.org/10.1007/s00521-021-06475-9
  • 70. Pekel E (2020) Estimation of soil moisture using decision tree regression. Theor Appl Climatol 9:1111–1119. https://doi.org/10.1007/s00704-019-03048-8
  • 71. Pérez-Barea JJ, Fernández-Navarro F, Montero-Simó MJ, Araque-Padilla R (2018) A socially responsible consumption index based on non-linear dimensionality reduction and global sensitivity analysis. Appl Soft Comput 69:599–609. https://doi.org/10.1016/j.asoc.2018.04.059
  • 72. Pradines D (1977) Hydrogeological study of the Middle Western Cheliff"; drilling report. Internal Report, 44p (in French)
  • 73. Rahman M, Ningsheng C, Islam MM, Ashraf Dewan A, Iqbal J, Muhammad Ali Washakh R, Shufeng T (2019) Flood susceptibility assessment in bangladesh using machine learning and multi-criteria decision analysis. Earth Syst Environ 3:585–601. https://doi.org/10.1007/s41748-019-00123-y
  • 74. Ram A, Tiwari SK, Pandey HK, Kumar Chaurasia A, Singh S, Singh YV (2021) Groundwater quality assessment using water quality index (WQI) under GIS framework. Appl Water Sci 11:46. https://doi.org/10.1007/s13201-021-01376-7
  • 75. Roshni T, Jha MK, Drisya J (2020) Neural network modeling for groundwater-level forecasting in coastal aquifers. Neural Comput & Applic 32:12737–12754. https://doi.org/10.1007/s00521-020-04722-z
  • 76. Sargazi S, Mokhari M, Ehrampoush MH, Almodaresi SA, Sargazi H, Sarhadi M (2021) The application of geographical information system (GIS) approach for assessment of groundwater quality of Zahedan city, Sistan and Baluchestan Province. Iran Groundw Sustain Dev 12:100509. https://doi.org/10.1016/j.gsd.2020.100509
  • 77. Sakizadeh M (2016) Artificial intelligence for the prediction of water quality index in groundwater systems. Model Earth Syst Environ 2:8. https://doi.org/10.1007/s40808-015-0063-9
  • 78. Schrambach M, Mostefa L (1966) Exploitation and conservation of groundwater in the upper, middle, lower Cheliff and lower Mina plains. Internal Report, 277p (in French)
  • 79. Shirsath PB, Singh AK (2010) A comparative study of daily pan evaporation estimation using ANN, regression and climate based models. Water Resour Manag 24:1571–1581. https://doi.org/10.1007/s11269-009-9514-2
  • 80. Singh CK, Shashtri S, Mukherjee S, Kumari R, Avatar R, Singh A, Singh RP (2011) Application of GWQI to assess effect of land use change on groundwater quality in lower shiwaliks of Punjab: remote sensing and GIS based approach. Water Resour Manage 25:1881–1898. https://doi.org/10.1007/s11269-011-9779-0
  • 81. Soltani Mohammadi A, Sayadi Shahraki A, Naseri AA (2017) Simulation of groundwater quality parameters using ANN and ANN+PSO models (Case study: Ramhormoz Plain). Pollution 3:175–183
  • 82. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192. https://doi.org/10.1029/2000JD900719
  • 83. Tien Bui D, Pradhan B, Lofman O, Revhaug I (2012) Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and naive bayes models. Math Probl Eng. https://doi.org/10.1155/2012/974638
  • 84. Tiyasha TTM, Yaseen ZM (2020) A survey on river water quality modelling using artificial intelligence models: 2000–2020. J Hydrol 585:124670. https://doi.org/10.1016/j.jhydrol.2020.124670
  • 85. Tongal H, Booij M (2018) Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. J Hydrol 564:182–266. https://doi.org/10.1016/j.jhydriol.2018.07.004
  • 86. Ucun Ozel H, Gemici BT, Gemici E, Ozel BOB, H, Cetin M, Sevik H, (2020) Application of artificial neural networks to predict the heavy metal contamination in the Bartin River. Environ Sci Pollut Res 27:42495–42512. https://doi.org/10.1007/s11356-020-10156-w
  • 87. Vapnik VN (1998) Statistical learning theory. Wiley
  • 88. WHO (2011) Guideline for drinking water quality, 4th edn. World Health Organization, Geneva. http://www.whqlibdoc.who.int/publications/2011/9789241548151_eng.Pdf
  • 89. Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: Case study in Laoheba phosphorite mine in Sichuan. China Arab J of Geosci 7:3973–3982. https://doi.org/10.1007/s12517-013-1057-4
  • 90. Xiang Z, Yan J, Demir I (2020) A rainfall-runoff model with LSTM-based sequence to sequence learning. Water Resour Res. https://doi.org/10.1029/2019WR025326
  • 91. Yang Y, Xiong Q, Wu C, Zou Q, Yu Y, Yi H, Gao M (2021) A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism. Environ Sci Pollut Res 28:55129–55139. https://doi.org/10.1007/s11356-021-14687-8
  • 92. Yoon H, Jun SC, Hyun Y, Bae GO, Lee KK (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396:128–138. https://doi.org/10.1016/j.jhydrol.2010.11.002
  • 93. Zereg S, Boudoukha A, Benaabidate L (2018) Impacts of natural conditions and anthropogenic activities on groundwater quality in Tebessa plain, Algeria. Sustain Environ Res 28:340–349. https://doi.org/10.1016/j.serj.2018.05.003
  • 94. Zhang P (2019) A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction. Appl Soft Comput 85:105859. https://doi.org/10.1016/j.asoc.2019.105859
  • 95. Zhang LM, Wu XG, Zhu HP, AbouRizk SM (2017) Performing global uncertainty and sensitivity analysis from given data in tunnel construction. J Comput Civ Eng 31:04017065. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000714
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34d73b40-3b37-475a-9f9c-7e7de527ef8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.