PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Reconstruction of muon bundles in KM3NeT detectors using machine learning methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The KM3NeT Collaboration is installing the ARCA and ORCA neutrino detectors at the bottom of the Mediterranean Sea. The focus of ARCA is neutrino astronomy, while ORCA is optimised for neutrino oscillation studies. Both detectors are already operational in their intermediate states and collect valuable data, including the measurements of the muons produced by cosmic ray interactions in the atmosphere. This work explores the potential of machine learning models for the reconstruction of muon bundles, which are multi-muonevents. For this, data collected with intermediate detector configurations of ARCA and ORCA was used in addition to simulated data from the envisaged final configurations of those detectors. Prediction of the total number of muonsin a bundle as well as their total energy and even the energy of the primary cosmic ray is presented.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
93--109
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • AstroCeNT, Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Rektorska 4, 00-614 Warsaw, Poland
  • AGH University of Krakow, Center of Excellence in Artificial Intelligence, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Abdul Halim A., Abreu P., Aglietta M., Allekotte I., Almeida Cheminant K.,Almela A., Aloisio R.,et al.: Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger Observatory, Journal of Cosmology and Astroparticle Physics, vol. 2024(01), 022, 2024. doi: 10.1088/1475-7516/2024/01/022.
  • [2] Aiello S., Albert A., Alshamsi M., Garre S.A., Ambrosone A., Ameli F., Andre M.,et al.: Atmospheric muons measured with the KM3NeT detectors in comparison with updated numeric predictions, The European Physical Journal C, vol. 84(7), 696, 2024. doi: 10.1140/epjc/s10052-024-13018-8.
  • [3] Akiba T., Sano S., Yanase T., Ohta T., Koyama M.: Optuna. In: Proceedingsof the 25th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining, ACM, 2019. doi: 10.1145/3292500.3330701.
  • [4] Albrecht J.,et al.: The Muon Puzzle in cosmic-ray induced air showers and its connection to the Large Hadron Collider, Astrophysics and Space Science, vol. 367(3), 27, 2022. doi: 10.1007/s10509-022-04054-5.
  • [5] Carminati G., Bazzotti M., Biagi S., Cecchini S., Chiarusi T., Margiotta A., Sioli M., et al.: MUPAGE: a fast atmospheric MUon GEnerator for neutrinotelescopes based on PArametric formulas, 2009. doi: 10.48550/arXiv.0907.5563.
  • [6] Chen T., Guestrin C.: XGBoost: A Scalable Tree Boosting System. In:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, KDD ’16, ACM, New York, NY, USA, 2016.doi: 10.1145/2939672.2939785.
  • [7] Evoli C.: The Cosmic-Ray Energy Spectrum, 2020. doi: 10.5281/zenodo.4396125.
  • [8] Filippini F., Androutsou E., Domi A., Spisso B., Drakopoulou E.: Data reconstruction and classification with Graph neural networks in KM3NeT/ARCA, PoS, vol. ICRC2023, p. 1194, 2023. doi: 10.22323/1.444.1194.
  • [9] Giacomelli G., Margiotta A.: The MACRO Experiment at Gran Sasso. In: Charles Peck Fest, 2007. doi: 10.48550/arXiv.0707.1691.
  • [10] Greisen K.: End to the Cosmic-Ray Spectrum?, Physical Review Letters, vol. 16(17), pp. 748–750, 1966. doi: 10.1103/physrevlett.16.748.
  • [11] Heck D., Knapp J., Capdevielle J.N., Schatz G., Thouw T.: CORSIKA: A Monte Carlo code to simulate extensive air showers, 1998.
  • [12] Hess V.F.: Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten, Phys Z, vol. 13, pp. 1084–1091, 1912.
  • [13] de Jong M.: Multi-dimensional interpolations in C++, 2019. doi: 10.48550/arXiv.1907.02597.
  • [14] Kalaczyński P.: The Measurement and Modelling of Cosmic Ray Muons atKM3NeT Detectors, Ph.D. thesis, NCBJ, 2024. doi: 10.48550/arXiv.2402.02620.2402.02620.
  • [15] Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q.,et al.: LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: I. Guyon,U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Gar-nett (eds.),Advances in Neural Information Processing Systems, vol. 30, Curran Associates, Inc., 2017. https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.
  • [16] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., et al.: Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
  • [17] Scapparone E.: HEMAS: A Monte Carlo code for hadronic, electromagnetic and TeV muon components in air shower, 1998. doi: 10.48550/arXiv.physics/9902043.
  • [18] Telescope Array Collaboration: R. U. Abbasi, et al.: Study of muons from ultra-high energy cosmic ray air showers measured with the Telescope Array experiment, Phys Rev D, vol. 98, 022002, 2018. doi: 10.1103/PhysRevD.98.022002.
  • [19] The Alpha Magnetic Spectrometer Collaboration: M. Aguilar, et al.: The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II –Results from the first seven years, Physics Reports, vol. 894, pp. 1–116, 2021.doi: 10.1016/j.physrep.2020.09.003. The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part II – Results from the First Seven Years.
  • [20] The KASCADE Collaboration: W.D. Apel, et al.: KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays, Astroparticle Physics,vol. 47, pp. 54–66, 2013. doi: 10.1016/j.astropartphys.2013.06.004.
  • [21] The KM3NeT Collaboration: S. Adriçn-Martínez, et al.: Letter of intent for KM3NeT 2.0, Journal of Physics G: Nuclear and Particle Physics, vol. 43(8),p. 084001, 2016. doi: 10.1088/0954-3899/43/8/084001.
  • [22] The KM3NeT Collaboration: S. Aiello, et al.: gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes, Computer Physics Communications, vol. 256,107477, 2020. doi: https://doi.org/10.1016/j.cpc.2020.107477.
  • [23] The KM3NeT Collaboration: S. Aiello, et al.: The KM3NeT multi-PMT optical module, Journal of Instrumentation, vol. 17(07), P07038, 2022. doi: 10.1088/1748-0221/17/07/P07038.
  • [24] The PAMELA Collaboration: V. V. Mikhailov, et al.: Galactic Cosmic Ray Electrons and Positrons over a Decade of Observations in the PAMELA Experiment, Bulletin of the Russian Academy of Sciences, Physics, vol. 83(8), pp. 974–976, 2019. doi: 10.3103/S1062873819080288.
  • [25] Zatsepin G.T., Kuz’min V.A.: Upper Limit of the Spectrum of Cosmic Rays, Soviet Journal of Experimental and Theoretical Physics Letters, vol. 4, p. 78,1966. https://ui.adsabs.harvard.edu/abs/1966JETPL...4...78Z.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34d23666-a43e-4860-bc02-17cd8c32c32f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.