PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Black box dynamic modelling of proton exchange membrane fuel cells with artificial neural networks

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fuel cells are energy sources which can play an important role in transition of the energy sector into broader use of renewable energy. Numerical modelling provides an easy way to investigate properties of the objects modelled. There are various ways to model dynamic behaviour of the PEM fuel cells including methods using artificial neural networks. There are no clear rules of how a neural network should be configured: how many neurons in the hidden layer and which training algorithm should be used. In a time series modelling task additional parameters including sampling frequency, learning data set duration and number of past data points used for training need to be determined. The paper presents results of research on the influence of various model parameters on the PEM fuel cell modelling accuracy.
Rocznik
Strony
85--89
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Department of Electrical Engineering and Measurement Systems, University of Life Sciences in Lublin
Bibliografia
  • 1. Adhikari R., Agrawal R., 2014. A combination of artificial neural network and random walk models for financial time series forecasting. Neural Computing and Applications. 24(6). 1441-1449.
  • 2. Akinyele D., Rayudu R., 2014. Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments. 8. 74-91.
  • 3. Andrews J., Mohammadi S., 2014. Towards a'proton flow battery': Investigation of a reversible {PEM} fuel cell with integrated metal hydride hydrogen storage. International Journal of Hydrogen Energy. 39(4). 1740-1751.
  • 4. Sharifi A., Rowshanzamir S., Eikani M., 2010. Modelling and simulation of the steady-state and dynamic behaviour of a {PEM} fuel cell. Energy. 35(4). 1633-1646. Demand Response Resources: the {US} and International Experience.
  • 5. Bengio Y., Goodfellow I., Courville A., 2015. Deep learning. Book in preparation for MIT Press.
  • 6. Berry M., Linoff G., 1997. Data Mining Techniques: For Marketing, Sales, and Customer Support. John Wiley & Sons, Inc. New York, NY, USA.
  • 7. Cheng S., Liu J., 2015. Nonlinear modelling and identification of proton exchange membrane fuel cell (pemfc). International Journal of Hydrogen Energy. 40(30). 9452-9461.
  • 8. Chowdhury S., Das Saha P., 2013. Artificial neural network modelling of adsorption of methylene blue by naoh-modified rice husk in a fixed-bed column system. Environmental Science and Pollution Research. 20(2).1050-1058.
  • 9. Cui Y., Shi J., Wang Z., 2015. Complex rotation quantum dynamic neural networks using complex quantum neuron: Applications to time series prediction. Neural Networks 71. 11-26.
  • 10. Elmer T., Worall M., Wu S., Riffat S., 2015. Fuel cell technology for domestic built environment applications: State of-the-art review. Renewable and Sustainable Energy Reviews. 42. 913-931.
  • 11. Guarnieri M., Alotto P., Moro F., 2015. Modeling the performance of hydrogen-oxygen unitized regenerative proton exchange membrane fuel cells for energy storage. Journal of Power Sources. 297. 23-32.
  • 12. Han H., Qiao J., 2013. A structure optimisation algorithm for feedforward neural network construction. Neurocomputing. 99. 347-357.
  • 13. Kaytez F., Taplamacioglu M., Cam E., Hardalac F., 2015. Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power & Energy Systems. 67. 431-438.
  • 14. Latha K., Vidhya S., Umamaheswari B., Rajalakshmi N., Dhathathreyan K., 2013. Tuning of {PEM} fuel cell model parameters forediction of steady state and dynamic performance under various operating conditions. International Journal of Hydrogen Energy. 38(5). 2370-2386.
  • 15. Marohasy J., Abbot J., 2015. Assessing the quality of eight different maximum temperature time series as inputs when using artificial neural networks to forecast monthly rainfall at cape Otway, Australia. Atmospheric Research. 166. 141-149.
  • 16. Meiler M., Schmid O., Schudy M., Hofer E. 2008. Dynamic fuel cell stack model for real-time simulation based on system identification. Journal of Power Sources, 176(2). 523-528. Selected Papers presented at the10th {ULM} ElectroChemical Days.
  • 17. Moreno N., Molina M., Gervasio D., Robles J., 2015. Approaches to polymer electrolyte membrane fuel cells (pemfcs) and their cost. Renewable and Sustainable Energy Reviews. 52. 897-906.
  • 18. Napoli G., Ferraro M., Sergi F., Brunaccini G., Antonucci V., 2013. Data driven models for a {PEM} fuel cell stack performance prediction. International Journal of Hydrogen Energy. 38(26). 11628-11638.
  • 19. Ou S., Achenie L., 2005. A hybrid neural network model for {PEM} fuel cells. Journal of Power Sources. 140(2). 319–330.
  • 20. Pei J., Mai E., Wright J., Masri S., 2013. Mapping some basic functions and operations to multilayer feedforward neural networks for modelling nonlinear dynamical systems and beyond. Nonlinear Dynamics. 71(1-2). 371-399.
  • 21. Piotrowski A., Napiorkowski M., Napiorkowski J., Osuch M., 2015. Comparing various artificial neural network types for water temperature prediction in rivers. Journal of Hydrology. 529, Part 1. 302-315.
  • 22. Raga C., Barrado A., Lazaro A., Fernandez C., Valdivia V., Quesada I., Gauchia L., 2014. Black-box model, identification technique and frequency analysis for pem fuel cell with overshooted transient response. IEEE Transactions on Power Electronics. 29 (10). 5334-5346.
  • 23. Rocha M., Cortez P., Neves J., 2005. Evolution of neural networks for classification and regression. Neurocomputing. 70(16-18). 2809-2816, 2007. Neural Network Applications in Electrical Engineering. Selected papers from the 3-rd International Work-Conference on Artificial Neural Networks (IWANN 2005).
  • 24. Saengrung A., Abtahi A., Zilouchian A,. 2007. Neural network model for a commercial {PEM} fuel cell system. Journal of Power Sources. 172(2). 749-759.
  • 25. Schrems A., Pichler K., Steinmaurer G., Wahlmuller E., 2008. Data based modelling for pem fuel cell monitoring - a test bench application, part i. In Control Applications. CCA 2008. IEEE International Conference. 262-267.
  • 26. Sodhi S., Chandra P., 2014. Bi-modal derivative activation function for sigmoidal feedforward networks. Neurocomputing. 143. 182-196.
  • 27. Sreemathy S., Karthik M., 2015. Modelling and performance analysis of neural network based fuel cell driven electric traction system. In Innovations in Information, Embedded and Communication Systems (ICIIECS). 2015 International Conference. 1-6.
  • 28. Swingler K., 1996. Applying neural networks: A practical guide. London: Academic Press.
  • 29. van der Velde F., 2015. Computation and dissipative dynamical systems in neural networks for classification. Pattern Recognition Letters. 64. 44-52.
  • 30. Wang F., Gao C., Li S., 2014. Impacts of power management on a {PEMFC} electric vehicle. International Journal of Hydrogen Energy. 39(30). 17336- 17346.
  • 31. Xue X., Cheng K., Sutanto D., 2006. Unified mathematical modelling of steady-state and dynamic voltage-current characteristics for {PEM} fuel cells. Electrochimica Acta. 52(3). 1135-1144.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34d1eff3-5ace-44e7-8674-0627aad03b14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.