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Abstract. The fuel cells are energy sources which can 
play an important role in transition of the energy sector 
into broader use of renewable energy. Numerical 
modelling provides an easy way to investigate properties 
of the objects modelled. There are various ways to model 
dynamic behaviour of the PEM fuel cells including 
methods using artificial neural networks. There are no 
clear rules of how a neural network should be configured: 
how many neurons in the hidden layer and which training 
algorithm should be used. In a time series modelling task 
additional parameters including sampling frequency, 
learning data set duration and number of past data points 
used for training need to be determined. The paper 
presents results of research on the influence of various 
model parameters on the PEM fuel cell modelling 
accuracy.  

Key words: PEM fuel cells, neural network model, 
dynamic behaviour, black box. 

 

INTRODUCTION 

The fuel cells (FC) are among the most promising 
technologies offering transition of the energy sector from 
the traditional power sources into a new stage. One of the 
application is energy generation from hydrogen produced 
by a renewable power source with variable output (mostly 
wind or photovoltaics). A FC stack supplemented by 
hydrogen generator creates a power storage unit 
improving the functionality and usefulness of the 
renewable energy generation set by load levelling and 
customer-side peak shaving. In general, storage 
techniques can be classified into the following four major 
groups, with FC systems categorized under chemical 
energy storage technologies [2]: 

 electrical energy storage technologies, including: 
capacitor and supercapacitor storage, superconducting 
magnetic energy storage, 

 mechanical energy storage technologies, including: 
flywheel energy storage, compressed air energy storage, 
pumped hydro storage , 

 chemical energy storage technologies, including: 
battery energy storage, fuel cell systems, 

 thermal energy storage technologies, including: 
aquiferous thermal energy storage, cryogenic energy 
storage, hot thermal energy storage, pumped heat 
electrical storage. 

Currently there are six types of established fuel cell 
technologies available on the market [10]: 

 Proton Exchange Membrane Fuel Cell (PEMFC),  
 Alkaline Fuel Cell (AFC), 
 Direct Methanol Fuel Cell (DMFC), 
 Phosphoric Acid Fuel Cell (PAFC), 
 Molten Carbonate Fuel Cell (MCFC), 
 Solid Oxide Fuel Cell (SOFC). 
The PEMFCs are considered as having important 

advantages over other technologies [17]: ability to operate 
continuously at low temperature and high current 
densities, long stack life, short start-up time, capability of 
discontinuous operation, small size and high tolerance to 
shock and vibration. These features make this technology 
useful in the creation of electric vehicles, including 
bicycles, motorcycles, mini-trains, cars and buses[30]. 
Currently, the main disadvantages are high capital cost 
and low round trip efficiency of hydrogen fuel cell 
storage systems, at the level of 40-45 % [3]. 

Fuel cells, as a relatively new technology, are costly 
devices which results in high prototyping costs. In order 
to decrease the expenditure, numerical modelling can be 
used for general assessment of properties of the system in 
the preliminary state of the design work. One of the 
properties of the PEMFCs is scalability, so obtaining a 
good model of a small (and inexpensive) FC stack allows 
the creation of a model of a higher power stack, which 
can be used to test various configurations and layouts of 
the energy storage or production system. 

Another advantage of numerical modelling is that 
with efficient algorithm and computer system the 
simulation usually is faster than a real-world experiment.  

There can be various approaches to FC modelling. 
Some authors present models based on the physical and 
chemical laws that govern inside the cell, thus creating 
physical or semi-physical models [31, 4, 14, 11]. These 
models usually provide good accuracy, but they are not 
convenient to use. The main reason is that they require the 
cell parameters which are not directly available. 
Simulating dynamic states is even more challenging as it 
involves complex phenomena. 

The other group is often called “black box”. The 
name suggests that the model treats the simulated object 
as a processing unit in which one must find dependency 
between inputs and outputs without trying to resemble the 
phenomena taking place in the device. Another name used 
is data-driven models which suggests that the model is 
created on the foundation of experiments and 
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measurements conducted on the object being modelled. 
The methods used include: Uryson-Model [16], 
constructing equivalent electrical circuit [22], adaptive 
spline modelling of observation data [25], non-linear 
autoregressive moving average model with exogenous 
inputs [7]. 

The artificial neural networks (ANNs), as data-driven 
methods, have also been used to model both static and 
dynamic performance of the PEMFCs [19, 24, 18, 27]. 
They are mathematical structures inspired by biological 
neural systems. The most commonly used architecture is a 
multilayer perceptron which makes use of weights, 
usually sigmoid activation functions and a hidden layer 
consisting of varying number of nodes [23]. There is a 
number of applications of ANNs which can be divided 
into the following groups [26]: classification (pattern 
recognition) [29], density estimation, clustering and 
regression [20], including modelling of time series [9]. In 
this case the inputs consists of chosen number of past 
values of the input variables, enabling forecasting future 
output of a system. This can be done in one of two ways: 
open loop, when the output is predicted when past 
measured values of the output are available and closed 
loop, when only output of the model for the past points of 
time is available. The first situation takes place in the one 
step ahead forecasting, the latter in modelling of a system 
when only the initial state is known or assumed. A major 
advantage over other modelling techniques is low 
computational requirements once the network has been 
trained.  

The selection of the hidden layer size is often 
regarded as “art” as there are no clear rules of how to 
approach this problem. Some classical textbooks set the 
“rule of thumb” that the number of hidden neurons should 
not be greater than the number of inputs [6, 28]. In 
practice, the preferable network size depends on the 
particular case of the object modelled. In case of the times 
series modelling there are additional questions about how 
long the training period should be, what sampling 
frequency will provide best results. 

Most, if not all of the publications presenting ANN 
models are not fully “black box” as they take the inner 
temperature of the cell as one of the input parameters. The 
approach presented in this paper can be regarded as a true 
“black box” as it uses ambient temperature as one of the 
inputs. 

The purpose of the research presented in this paper is 
to create a simple ANN model driven entirely on data 
external to the PEM FC, determine which hidden layer 
size - training set duration - sampling frequency - training 
function - performance function combinations give better 
results than other. Also, it was interesting to check 
whether it is necessary to use temperature and hydrogen 
pressure as inputs in order to achieve satisfactory 
modelling accuracy. 

 
ARTIFICIAL NEURAL NETWORKS AND TIME 

SERIES MODELLING 
 

A feedforward neural network with one input, one 
hidden and one output layer can be regarded as one of the 
simplest ANN configurations (Fig. 1). The input layer 

consists of I nodes, with each node representing one input 
variable  x1 ... xI .  The main structure within the network 
is the hidden layer made of N neurons.  

 

 
 

Fig. 1. Structure of a feedforward ANN with one hidden 
layer 

 
Each of the hidden neurons performs an operation 

adding products of input variables x, the corresponding 
weights w and biases b with the use of an activation 
function  g [12]: 
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Usually g is a log-sigmoid function defined as: 
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or a tan-sigmoid function [8]: 
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The output layer performs calculations according to 
equation: 

 

y j=∑
n= 1

N

f n znj ,     j= 1,2,… , J ,n= 1,2,… ,N .   (4) 

 
The major step in creation of an ANN model of a 

given object is training of the network. In this process the 
information is stored in the weights and biases. It involves 
minimising a cost function C by finding near-optimal 
values for the network weights. This is done by feeding 
the inputs with an example data and calculating partial 
derivatives of C with respect to all the individual weights 
within the network [5] with required outputs known from 
the example data. The cost function can have various 
forms, one of them is a mean squared error (6). 
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Time series is a sequence of vectors X(t), with t 
denoting successive points in time, where t=1, 2, ... , n.   
X is commonly obtained from measurements, in which 
one of the stages is sampling the continuous signal in 
order to obtain discrete, usually uniformly spaced in time, 
data points. 

The most common task where ANNs are used is 
forecasting the X values of one or more time steps ahead. 
This can be achieved by creating a network with input 
vector I consisting of stacked k past values of X. 
Assuming that X is formed of m scalars: 
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Vector I is used to model the value of X at time point 
t. In addition to the past values of X, other variables can 
be used in creation of I. Examples of applications of 
ANNs to time series modelling include forecasting in the 
area of finances [1], weather [15], electricity consumption 
[13], hydrology [21] and other. 

 
EXPERIMENTAL SET-UP AND METHODS USED 

 
Fig. 2 shows the experimental set-up. It consists of a 

PEM fuel cell, metal hydride hydrogen storage tank and 
electronic programmable load. In order to measure the 
parameters current, voltage, temperature and pressure 
sensors were used. The whole experiment was controlled 
and the data collected by a computer program developed 
by the author. The temperature, current and voltage were 
measured via an analogue to digital converter and the 

pressure through the RS232 interface. The electronic load 
was also controlled using the RS232 interface. In order to 
control the ambient temperature, the fuel cell was placed 
in a climate chamber. The fuel cell used was a 12 W PEM 
fuel cell stack, type H-12 manufactured by Horizon. It is 
cooled by air with an integrated fan. The compact 
construction makes it suitable for small projects. It is a 
simple, self-humidified air-fed stack. 

The first step was to collect data from an experiment, 
during which the ambient temperature was changed from 
10 to 40 oC. The hydrogen pressure was changing only as 
a result of the tank discharge and varied between 50 and 
56 kPa. During the experiment, the fuel cell was put 
under load of various current levels changed in a step-like 
and triangle manner in the range of 0 to 2 A. The data 
were collected over a period of 28 minutes with the rate 
of 400 samples per second, which resulted in the raw set 
of almost 70 000 data points used later to produce input 
and output sets for the neural network training and 
testing. 

The network was configured as feedforward with 
backpropagation training algorithm. In order to test the 
accuracy of the modelling various configurations of the 
training algorithm and input data set were used which are 
summarized in Table 1. The two training function 
algorithms were chosen for the sake of low training 
computation time as compared to other. In this way 1440 
combinations of the parameters were obtained. The 
following stoppage criteria were defined: the maximum 
of 400 training epochs or 6 maximum validation failures, 
whichever comes first. 

 

 
 

Fig. 2. Diagram of the experimental set-up 
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Table 1. Values of the parameters changed for modelling accuracy testing 
Parameter Values 
Resampling 1, 2, 3 

Number of delays 1, 2, 3, 4 
Duration of the training and testing set 50, 100, 150, 200, 250 seconds 

Training function Levenberg-Marquardt (trainlm) and Bayesian 
regulation backpropagation (trainbr), 

Performance function Mean squared normalized (mse), Sum squared error (sse) 
Number of neurons in the hidden layer 2, 5, 8, 11, 14, 17, 20, 23 

  
Resampling procedure relates to collecting every i-th 

data point and deleting other points, thereby reducing the 
effective sampling frequency. Delay parameter specifies 
how many past data points are fed into the neural network 
as input.  

Neural network model was implemented in Matlab. A 
script has been created to handle the parameter variation, 
training and testing of the network. The procedure 
involved dividing the original raw set into 30 pieces 
evenly distributed in time. As the temperature was 
changing in time, the subsets were also distributed 
according to temperature. Half of the sets were used for 
training (with subdivisions into training, testing and 

validation). The other half was then used to test the 
modelling accuracy. This was done in order to prevent the 
effect of over-fitting influencing the results - in our case 
the learning set and set used for testing and error 
estimation are completely different. The tests were 
performed in a closed loop configuration, which means 
that the past voltage data points were not taken from 
measurements but as a result of modelling from the 
previous time points, as it would be in a practical 
modelling task, where the previous voltage values are not 
known but have to be calculated. Fig. 3 shows the data 
flow in the model. 

 

 
 

Fig. 3. Data flow in the model 
 
Additionally, three other tests have been performed: 

modelling without using temperature as input, without 
pressure and without both of these parameters. This was 
done to test how the network will perform when limited 
data is available. 

The outcome of the experiments was a 6-dimensional 
array containing mean square error (MSE) calculated as: 

 

MSE=
1
n
∑
t= 1

n

(X i−Y i)
2

.   (6) 

 
where: Xi  is the modelled voltage (output of the ANN) 
and  Yi  is the measured voltage at point  i. 

 

RESULTS AND DISCUSSION 
 

In order to evaluate the influence of various factors 
on the modelling accuracy the results were analysed in 
two ways. The first method used was to divide the results 
into two groups: one under a certain MSE level, the other 
above that point. The MSE threshold values were 
calculated according to the Matlab quantile function, 
which returns quantile value for a given probability. Table 
2 shows MSE threshold value corresponding to the given 
quantile threshold probability level, minimum and 
maximum MSE values. Results are illustrated on Fig. 4 
and 5. The 'dot' markers represent configurations for 
which the MSE was above threshold and the 'x' markers - 
under the threshold. Therefore, network configurations 
with better modelling quality are marked with an 'x'. 

Table 2. Description of the conditions used in the illustration of the accuracy (Fig. 4 and 5) 
Figure Pressure used 

as input? 
Temperature 

used as input? 
Quantile 
threshold 

MSE 
threshold (V) 

Minimum value 
of MSE (V) 

Maximum value 
of MSE (V) 

Fig. 4a Yes Yes 0.003 0.0046 0.0043 143 
Fig. 5a Yes Yes 0.02 0.0053 0.0043 143 
Fig. 4b Yes No 0.003 0.0148 0.0137 186 
Fig. 5b No Yes 0.003 0.0056 0.0053 81 
Fig. 4c No Yes 0.02 0.006 0.0053 81 
Fig. 5c No Yes - 0.0053 0.0053 81 
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Fig. 4. Accuracy of modelling. The 'x' markers show simulation and learning properties for which MSE is below the 

threshold. Description of modelling parameters can be found in Table 2. The Levenberg-Marquardt (trainlm) 
training function is marked as 1 and Bayesian regulation backpropagation (trainbr) - as 2. Mean squared 
normalized (mse) performance estimator is marked as 1, Sum squared error (sse) - as 2. Axes description: A - 
Resampling factor, B – Number of delays, C – Training time (s), D- Training function, E – Performance estimator, 
F – Number of neurons 
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Fig. 5. Accuracy of modelling. Description as in Fig. 4 
 
 

 



                          BLACK BOX DYNAMIC MODELLING OF PROTON EXCHANGE …           91 

The table shows that in a case when temperature was 
not considered, the minimum MSE is much higher than in 
other cases. Moreover, when both the temperature and 
pressure were neglected, the accuracy was even worse and 
therefore not presented in the paper. In the model where 
only the pressure was ignored the error was slightly 
higher compared to the case with both temperature and 
pressure included. This is caused by a low variation of the 
pressure value during the experiment. All the results show 
that higher sampling frequency offers the best accuracy of 
the model. Usually, taking an input vector of just one past 
value gives best results, except the case shown on Fig. 4a, 
where longer delays offer good accuracy when combined 
with longer training period duration. Also increasing the 
training time period over 100 seconds does not improve 
results, except the case when the temperature is not taken 
into account, where at least 150 seconds are needed for 
better outcome. The Bayesian regulation back-
propagation training function usually offers better results. 
Sum of squared errors serves slightly better as a 
performance estimator, mean squared error performs in a 
similar way. Increasing the number of the neurons in the 
hidden layer over 5 usually improves accuracy. The 
network can well model the current voltage value with 
data from just one, past point in time.  

In order to achieve similar accuracy in the model 
without pressure input as in the model with both pressure 
and temperature (MSE threshold 0.0053 V) the following 
parameters were needed (Fig. 5c): resampling factor - 1, 
number of delays - 1, training time - 100 s, training 
function - trainbr, performance estimator - MSE, number 
of neurons - 12. 

The second way to compare the results was to order 
them by the MSE, starting with ones with best accuracy 
(Table 3 and 4 present some of best configurations). Also 

here it can be seen that shorter example sets in most cases 
offer best results. Bayesian regulation backpropagation 
performs better as a training function. It can be seen 
clearly looking at the tables where this function is placed 
in most of the cases. To achieve similar results as in the 
first row of Table 3 with Levenberg-Marquardt 
backpropagation a vector of 3 past and an example set of 
250 s duration is needed and still the MSE is slightly 
higher. In the case presented in Table 4 with Levenberg-
Marquardt backpropagation a network with more neurons 
in the hidden layer were needed for a similar accuracy as 
in the first row. Tables 3 and 4 contain a column with time 
that was needed to train the network. This parameter is 
highly dependent on the hardware of the computer used 
so the numbers can be only used to compare various 
cases. Generally network with more inputs (longer 
delays) and more nodes in the hidden layer need more 
time to train, however this is not a strict rule - for 
example first two rows in both of the tables show that 
despite larger network size the training time was shorter. 
The computer used for training was a Windows 7 64 bit - 
based system with Intel(R) Core(TM) i5-3340M CPU @ 
2.70GHz processor with 4 GB of RAM. 

Fig. 6 and 7 present time and regression plots of the 
best performing models from Table 3 and 4. The model 
output matches the measurement curve well, as can be 
seen in both cases. In the model without hydrogen 
pressure considered, the output of the model differs from 
measurements more significantly especially during fast 
transitions and floats around the target curve.  

The regression plots show very good output 
approximation by the network. The overwhelming 
majority of points lay on the  Y=T  line and the 
correlation coefficient is well over 0.99 in all of the cases, 
with small number of outliers. 

 
Table 3. Modelling parameters offering best accuracy - model including both temperature and pressure 

Resampling Delays Duration of the 
example set (s) 

Training 
function 

Performance 
estimator 

Number 
of neurons MSE (V) Time needed 

to train (s) 
1 1 100 trainbr sse 14 0.0043 75 
1 1 100 trainbr sse 17 0.0044 55 
1 2 100 trainbr mse 8 0.0045 71 
1 3 250 trainlm sse 14 0.0046 45 
1 1 100 trainbr mse 14 0.0046 99 
1 4 250 trainbr sse 17 0.0046 356 
1 2 150 trainbr sse 20 0.0046 171 

 
 

Table 4. Modelling parameters offering best accuracy - model including temperature, without pressure 

Resampling Delays Duration of the 
example set (s) 

Training 
function 

Performance 
estimator 

Number 
of neurons MSE (V) Time needed 

to train (s) 
1 1 100 trainbr sse 11 0.0053 64 
1 1 100 trainlm sse 20 0.0054 58 
1 1 100 trainbr sse 17 0.0054 29 
1 2 200 trainbr mse 17 0.0055 145 
1 1 150 trainbr sse 5 0.0056 130 
1 2 100 trainbr mse 23 0.0056 38 
1 1 250 trainbr sse 8 0.0056 95 
1 1 100 trainbr mse 8 0.0056 51 
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Fig. 6. Time plots for the model configuration providing best accuracy with pressure used as input (a) and without 

temperature (b) 
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Fig. 7. Regression plots for the model configuration providing best accuracy with pressure used as input (a) and 
without temperature (b) 
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CONCLUSIONS 

 
A model of a 12 W PEM fuel cell employing artificial 

neural networks has been created. The input variables of 
the model were: electrical current, hydrogen pressure and 
outside temperature. The output of the model was stack 
voltage. The model accuracy was tested in various 
configurations in which the following parameters were 
changed: sampling frequency, learning dataset duration, 
training function, performance estimation function, 
number of neurons, number of delays (past data points 
used). Altogether 1440 combinations were tested. 

The results prove that with proper selection of the 
parameters it is possible to achieve good simulation 
accuracy of up to MSE=0.0043 V in modelling of the 
dynamic state. It has been shown that the high sampling 
frequency (400 S/s in the analysed case) and one delay 
point provide best accuracy. There is no serious difference 
whether MSE or SSE is used as error estimator. Bayesian 
regulation backpropagation usually gives better training 
results than Levenberg-Marquardt when used as a training 
algorithm. In most cases an example data set of a duration 
of 100 s was enough to provide best results. There is no 
evidence that the “rule of thumb” (number of neurons in 
the hidden layer does not need to be higher than number 
of inputs) mentioned in the Introduction is useful in 
designing neural network.  

It has also been tested if it is necessary to take 
temperature and hydrogen pressure as inputs of the model. 
In the analysed case the variation of the hydrogen 
pressure was relatively small (50 to 56 kPa) and it was 
possible to achieve good results (up to MSE=0.0053 V) 
with this variable ignored. Temperature was varied in the 
range of 10 to 40 °C. Omitting this variable resulted in a 
considerable decrease of the model accuracy - best results 
with MSE= 0.0137 V. 

The investigation presented in this paper may give 
guidance to a researcher seeking a simple model, which 
can be created without detailed physical data of the FC 
being modelled when sample data can be obtained from 
an easy to perform experiment. The model can be used to 
model dynamic behaviour of a PEM fuel cell as a part of 
energy management system. 
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